Scienza indiana: periodo classico. Matematica
Takao Hayashi
Matematica
'Gaṇita' ('matematica')
Prima dell'introduzione e diffusione dell'astrologia oroscopica e dell'astronomia matematica nella società [...] in Kerala, fu uno dei più brillanti matematici del mondo. Il suo nome è ricordato se non altro per la scoperta di uno sviluppo in seriedipotenzedi π e forse anche per quella delle principali funzioni trigonometriche. I versi che riguardano queste ...
Leggi Tutto
Numeri, teoria dei
LLarry Joel Goldstein
di Larry Joel Goldstein
SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] Jacobi del 1829. Sia q=e2πiz. Allora:
Sviluppando entrambi i membri delle due identità in seriedipotenzedi q e confrontando i coefficienti si ottengono i seguenti risultati.
Teorema 1:
Teorema 2:
Se nel teorema 1 si pone n =p=primo dispari ...
Leggi Tutto
L'Ottocento: fisica. Raggi e onde luminosi
Jed Z. Buchwald
Raggi e onde luminosi
Dal XVII al XIX sec., due immagini fisiche fondamentali dominarono la speculazione e, talvolta, persino la matematizzazione [...] modo:
trattando l'operatore gradiente come una variabile.
In questa equazione G e H sono operatori formati da seriedipotenze dell'operatore gradiente, mentre Δα è un operatore vettoriale le cui componenti sono le derivate parziali rispetto alle ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] Laurent (1813-1854), a concepire tale metodo in un lavoro presentato nel 1843 all'Académie sullo sviluppo in seriedipotenzedi una funzione definita e differenziabile in un anello. Laurent enunciò il suo teorema in completa generalità ma non ne ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] a queste si ottengono differenziando le funzioni f rispetto ai parametri. Tipicamente, Lie scrisse le trasformazioni sotto forma diseriedipotenzedi ai+δai ed esaminò i coefficienti delle δai (i quali corrispondono alle derivate prime in una ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] nei quali semplicemente non lo erano e ricordava, per analogia, l'uso delle seriedipotenze in analisi: uso legittimo quando le serie convergono, ma privo di significato altrimenti.
Anche dopo che Poncelet ebbe abbandonato il campo delle ricerche ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] le condizioni che rendevano rigoroso un procedimento assai diffuso per calcolare la somma delle serie numeriche, quello di trasformare la serie data in una seriedipotenzedi x, calcolarne la somma e poi sostituire in quest'ultima al posto della x ...
Leggi Tutto
L'Ottocento: fisica. La fisica matematica francese e l'elettrodinamica di Ampere
Friedrich Steinle
La fisica matematica francese e l'elettrodinamica di Ampère
Elettricità e galvanismo nel primo Ottocento
Nel [...] alle quali era possibile risolvere gli integrali che comparivano nei calcoli mediante l'espansione in seriedipotenze e trascurando i termini di ordine superiore. Come primo risultato generale, trovò che lo spessore y è sempre proporzionale alla ...
Leggi Tutto
L'Ottocento: astronomia. Il problema dei tre corpi e la stabilita del Sistema solare
June Barrow-Green
Il problema dei tre corpi e la stabilità del Sistema solare
Questo capitolo illustra, a grandi [...] periodo 2π corrisponde a un punto fisso e una soluzione con periodo 2kπ corrisponde a un ciclo di periodo k.
Per esprimere in seriedipotenze la soluzione dell'equazione, Poincaré usò come parametro la massa μ del più piccolo tra i due corpi primari ...
Leggi Tutto
L'Eta dei Lumi: matematica. Lo sviluppo della teoria della probabilita e della statistica
Oscar Sheynin
Lo sviluppo della teoria della probabilità e della statistica
I primi sviluppi del calcolo delle [...] .
Nel ricavare la sua espressione, de Moivre usò ampiamente lo sviluppo in seriedipotenzedi funzioni (trovando talvolta serie divergenti di cui calcolava la somma di parecchi termini).
In questo modo la distribuzione normale fece la sua comparsa ...
Leggi Tutto
potenza
potènza (ant. potènzia) s. f. [dal lat. potentia, der. di potens -entis «potente»]. – 1. In senso generico, l’essere potente, il fatto di potere: così ... la potenza corrispondesse alla buona volontà (I. Nievo); in senso relativo,...
sonificazione s. f. Nella tecnologia informatica, la trasformazione di dati correlati tra di loro in segnali acustici, al fine di rendere i primi più facilmente comunicabili e interpretabili. ♦ Probabilmente non entreranno nelle hit di quest'estate...