La seconda rivoluzione scientifica: matematica e logica. Algebra
Claudio Procesi
Algebra
Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] estesi a vari campi, dalla teoria dei numeri alla teoria di una variabile complessa, fino ai recenti lavori sui D-moduli riguardanti gli aspetti algebrici dei sistemi di equazioni differenziali.
Il punto di vista omologico nasce da un'idea generale ...
Leggi Tutto
ENRIQUES, Federigo
Giorgio Israel
Nacque a Livorno il 5 genn. 1871 da Giacomo e da Matilde Coriat.
La famiglia si trasferi a Pisa, dove egli frequentò le scuole secondarie. Già qui manifestò la sua [...] un pilastro della teoria, e cioè la teoria generale dei sistemi lineari di curve sopra le superficie algebriche, che consente di una funzione algebrica z(x, y) di due variabili complesse. Altri fondamentali contributi dell'E. sono legati allo studio ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] è spesso possibile esprimerla algebricamente con un sistema di equazioni (o disequazioni) nei coefficienti (ℂ) indica lo spazio delle matrici (n+1)×(n+1) a coefficienti nel campo complesso ℂ e detX il determinante di X), le serie Bn e Dn dei gruppi ...
Leggi Tutto
Complessità algoritmica
Fabrizio Luccio
Gli studi di complessità di calcolo si sono sviluppati essenzialmente nella seconda metà del ventesimo secolo. Basati sulla formalizzazione del concetto di algoritmo, [...] α non è accettata da M si pone convenzionalmente s(α)=t(α)=1. Le complessità in spazio e tempo S(n) e T(n) per M e P si definiscono detto generatore pseudo-casuale, disponibile in ogni sistema di programmazione, le cui uscite hanno una distribuzione ...
Leggi Tutto
L'Ottocento: matematica. Equazioni differenziali ordinarie
Jeremy Gray
Equazioni differenziali ordinarie
Variabili reali
Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] ∑nanxn (con x reale), o della forma ∑nanzn (con z complesso), egli poneva l'accento sulla necessità di individuare l'insieme dei valori per le matrici.
Una generalizzazione del concetto di sistema lineare è stata studiata da Sophus Lie (1842-1899 ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento
Jeremy Gray
Problemi di analisi complessa alla fine dell'Ottocento
La teoria generale [...] numeri reali x e y si possono fondere insieme in una singola quantità complessa x+iy. Un passo oltre questa ovvia osservazione è il teorema di o si può passare allo studio di un sistema di equazioni differenziali del primo ordine. Come Hilbert ...
Leggi Tutto
L'Ottocento: matematica. Calcolo geometrico
Paolo Freguglia
Gert Schubring
Calcolo geometrico
Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] uguale alla media delle distanze di tutti i punti del sistema dallo stesso piano. Tutti devono riconoscere i progressi che essi culturale francese, che si occuparono della natura dei numeri complessi. L'idea di concepire l'unità immaginaria ε come ...
Leggi Tutto
Frattali
Luciano Pietronero
La geometria frattale permette di caratterizzare le strutture che godono della proprietà di invarianza di scala. Il termine frattale (dal latino fractus, rotto o frammentato) [...] che permettano di capire l'origine autoorganizzata delle strutture frattali e delle altre proprietà dei sistemi fisici complessi. Una delle principali difficoltà è rappresentata dal fatto che la dinamica temporale è intrinsecamente irreversibile ...
Leggi Tutto
MARCHETTI, Alessandro
Cesare Preti
Nacque a Pontormo (ora Pontorme, frazione di Empoli), il 17 marzo 1633 da Angelo e da Luisa Buonaventuri. Terzo di cinque figli, non ancora adolescente rimase orfano [...] materialistica antica. L'accoglienza fu, nel complesso, piuttosto fredda. Alla ferma opposizione degli ambienti inclinato (p. XI), tentando di dare così una prima coerente sistemazione a tutta la statica galileiana del piano inclinato. Nell'opera il ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola di Leopoli-Varsavia
Ettore Casari
La scuola di Leopoli-Varsavia
Gli inizi
La singolare vicenda intellettuale divenuta nota come 'Scuola [...] che M,N⊆S sono logicamente equivalenti quando determinano lo stesso sistema deduttivo, ossia quando si ha: ℂ(M)=ℂ(N). Fissò un' proposizionale, rivolgendo l'attenzione a quel ben più complesso oggetto logico che sono le proposizioni strutturate non ...
Leggi Tutto
sistema
sistèma s. m. [dal lat. tardo systema, gr. σύστημα, propr. «riunione, complesso» (da cui varî sign. estens.), der. di συνίστημι «porre insieme, riunire»] (pl. -i). – 1. Nell’ambito scientifico, qualsiasi oggetto di studio che, pur...
complessita
complessità s. f. [der. di complesso1]. – 1. L’esser complesso (nelle varie accezioni dei sign. 1 e 2 di quest’agg.): c. di una questione, di un ragionamento, di una costruzione teorica; c. di un atto giuridico; esaminare una situazione...