spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] determinazione del numero dei punti e del numero dei sottospazi di data dimensione dello s. ambiente, e più in 0), (0, 1, ... 0), ..., (0, 0, ... 1). Sia V uno s. vettoriale su K; si verifica che le forme lineari definite in V, e a valori in K, cioè ...
Leggi Tutto
TOPOLOGIA (v. analysis situs, I, p. 87; topologia astratta, App. II, 11, p. 1004; topologia, App. III, 11, p. 960)
Santuzza Baldassarri Ghezzo
La t. oggi è una delle discipline fondamentali della matematica; [...] x per ogni x ∈ M, risulta continua; M, con questa t., è detto un "sottospazio" di X, e iM un'"immersione" di M in X. Se X1 è un altro sviluppo, specialmente nel caso in cui le fibre sono spazi vettoriali (con la creazione, fra l'altro, seguendo A. ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] insieme di tutte le funzioni razionali f tali che (f) + D ≥ 0 è chiaramente uno spazio vettoriale, denotato con L (D). Se D ≥ 0, dire che f ∈ L (D) equivale a matematico, un codice è un sottospazio lineare di uno spazio vettoriale su un campo finito ( ...
Leggi Tutto
Algebra
Irving Kaplansky
sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] di Cayley. Un modo di descriverla può essere il seguente: siano V e W due spazi vettoriali di dimensione 3 su un dato corpo F, e sia C l'insieme di tutte le cosa che il reticolo di tutti i sottospazi di un opportuno spazio proiettivo.
Il riferimento ...
Leggi Tutto
Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] Operatori lineari limitati
Sia (come nel cap. 2, § a) E uno spazio vettoriale su K = R o K = C. Si dice che E è ‛normato' ′ ϕ, x> per tutti gli x in D(A), il cui dominio è il sottospazio D(A′) di tutti quei ϕ in E′, per cui l'applicazione x in D(A) ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] .
Il primo capitolo inizia illustrando l'idea generale di spazio vettoriale topologico su un campo valutato. La completezza conduce agli spazi di Banach. Si studiano i sottospazi, le parti equilibrate, le parti assorbenti. Intervengono poi le varietà ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] parziali. Un operatore illimitato T in uno spazio di Hilbert E non è definito nell'intero spazio E ma soltanto in un sottospaziovettoriale dom(T), che per semplicità supponiamo sia denso in E. Tale operatore è lineare e ha valori in E; non è ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] da Joseph H.M. Wedderburn. Un'algebra S di operatori su uno spazio vettoriale W di dimensione finita si dice semisemplice se lo spazio W si decompone in somma di sottospazi irriducibili per l'algebra data. Il teorema di struttura di Wedderburn (1908 ...
Leggi Tutto
L'Ottocento: matematica. Calcolo geometrico
Paolo Freguglia
Gert Schubring
Calcolo geometrico
Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] con numeri ipercomplessi avvengono componente per componente in sottospazi di dimensione uno o due; dal momento però sviluppò una nuova teoria in stretta relazione con il calcolo vettoriale, la teoria delle matrici. I primi elementi di questa teoria ...
Leggi Tutto
sottospazio
sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
supplementare
agg. [der. di supplemento]. – 1. Che serve, o può servire, di supplemento: un numero s. della rivista; bisognerà dargli una razione s.; treni s., quelli istituiti in determinate occasioni per far fronte a un eccezionale movimento...