spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] studio può condurre a questioni di teoria dei numeri. Tra le questioni tipiche: determinazione del numero dei punti e del numero dei sottospazi di data dimensione dello s. ambiente, e più in generale del numero dei punti di una curva o di una varietà ...
Leggi Tutto
spazio proiettivo
Luca Tomassini
Dati due insiemi P,Q e una relazione R⊂P×Q, consideriamo la tripla C={P,Q,R} e chiamiamo ogni elemento di P un punto e ogni elemento di Q una linea. Se (p,l)∈R è valida [...] soddisfi (d) è detta finito-dimensionale e in questo caso l’insieme P è detto spazio proiettivo. Consideriamo ora successioni di sottospazi del tipo P/⊇Pn−1/⊇.../⊇P0≠∅, dove ∅ indica l’insieme vuoto e le inclusioni sono strette. Il numero n della più ...
Leggi Tutto
Geometria non commutativa
Irving E. Segal
Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria [...] 2) e(pq)=e(p)e(q), se p e q sono polinomiali basati su sottovarietà ortogonali di H, dove un elemento di P appartiene a un sottospazio M di H se è contenuto nell'algebra generata dalle z e dalle z* con z in M. In conseguenza dell'equazione 2), e può ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] forma di Chow di una varietà W di dimensione k nello spazio proiettivo di dimensione n come equazione dell'ipersuperficie dei sottospazi di dimensione n−k−1 che incontrano W.
Il secondo collegamento è nelle idee di Hodge che, studiando la formula di ...
Leggi Tutto
Conformità o equivalenza tra più parti, termini, elementi.
Biologia
Concetto che esprime il rapporto fra organi o strutture morfologiche propri di categorie tassonomiche diverse (fig. 1), ma aventi la [...] p (p minore o uguale alla dimensione n della varietà V); si tratta, questa volta, di esaminare se esistono in V sottospazi di dimensione p che siano privi di frontiera (così come, relativamente alla dimensione 1, è priva di frontiera una linea chiusa ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] di X. Tale decomposizione è unica.
Sia X ⊂ PN una varietà proiettiva. Un punto x ∈ X è detto ‛semplice' se per qualche sottospazio Pn ⊂ PN e per qualche proiezione PN → Pn esiste un intorno di x in X su cui la proiezione induce un omeomorfismo con un ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] da Hermann Künneth (1892-1975), quelle tra i gruppi di omologia di uno spazio che si può esprimere come unione di due sottospazi da Walther Mayer (1887-1948) e Vietoris a Vienna.
Nel lavoro di Mayer del 1929, Über abstrakte Topologie (Sulla topologia ...
Leggi Tutto
L'Ottocento: matematica. Calcolo geometrico
Paolo Freguglia
Gert Schubring
Calcolo geometrico
Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] già lavorato a un teorema fondamentale nel quale tutte le operazioni con numeri ipercomplessi avvengono componente per componente in sottospazi di dimensione uno o due; dal momento però che non tutte le ipotesi erano generali, negli anni Ottanta ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] di spazio vettoriale topologico su un campo valutato. La completezza conduce agli spazi di Banach. Si studiano i sottospazi, le parti equilibrate, le parti assorbenti. Intervengono poi le varietà lineari, gli iperpiani chiusi e gli spazi vettoriali ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana
Alberto Conte
Ciro Ciliberto
La scuola di geometria algebrica italiana
Gli inizi: Luigi Cremona e [...] notevoli (grassmanniane, varietà di Veronese, varietà di Segre e così via) e di loro sottovarietà (per es., famiglie di sottospazi di uno spazio proiettivo) e lo studio di 'fenomeni patologici': per esempio, varietà le cui varietà di spazi secanti o ...
Leggi Tutto
sottospazio
sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
supplementare
agg. [der. di supplemento]. – 1. Che serve, o può servire, di supplemento: un numero s. della rivista; bisognerà dargli una razione s.; treni s., quelli istituiti in determinate occasioni per far fronte a un eccezionale movimento...