RELATIVITÀ
Christian Moller
Tullio Regge
Eugenio Garin
Relatività di Christian Møller
sommario: 1. Introduzione e panorama storico: a) il principio di relatività speciale. Sistemi inerziali; b) relatività [...] a coefficienti costanti di due vettori è ancora un vettore di Killing. Questo spazio è isomorfo a un sottospaziolineare di quello dei dati iniziali ξμ, ξμ;ν, e quindi ha al più dimensione N(N+1)/2 per una varietà a N dimensioni.
Data un'isometria ...
Leggi Tutto
varieta
varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] V della forma x₀+L, dove x₀ è un generico elemento di V e L è un sottospaziolineare di V. ◆ [ALG] V. liscia: v. varietà differenziabili infinito-dimensionali: VI 492 e. ◆ [ALG] V. lorentziana: particolare v. differenziabile con metrica lorentziana ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] di più elementi k1v1+ ... +krvr, nonché, di dipendenza e indipendenza lineare: v1, ..., vr sono indipendenti se k1v1+ ... +krvr=0 solo quando k1= ... =kr=0. Sottospazio V′ di V è l’insieme degli elementi di V ottenuto partendo da un sottoinsieme ...
Leggi Tutto
QUANTISTICA, MECCANICA (XXVIII, p. 592; App. II, 11, p. 634; III, 11, p. 531)
Piero Caldirola
Sui limiti di validità dell'attuale meccanica quantistica. - Una delle direzioni di maggior sviluppo della [...] = Σ Ei ÅEi dove ÅEi è il proiettore ortogonale sul sottospazio SEi. L'autospazio SEi è detto energy shell relativo al ???/dt = Æϕ???(t), dove Æ è un operatore lineare nello spazio degli operatori statici macroscopici. Equivalentemente si può scrivere ...
Leggi Tutto
Fisica
BBruno Ferretti
di Bruno Ferretti
Fisica
sommario: 1. Introduzione. a) Obiettività secondo Poincaré. b) Storia naturale e fisica. c) Il metodo sperimentale e il metodo teorico. d) Storicità [...] rappresenta la funzione d'onda, H è un operatore lineare hermitiano che, nella nuova meccanica quantica, rappresenta l'hamiltoniana fi gradi di libertà deve essere descritto, nel sottospazio delle fasi relativo, con una incertezza molto maggiore di ...
Leggi Tutto
Teorie unificate
MMirza A. B. Bég
di Mirza A. B. Bég
SOMMARIO: 1. Introduzione. □ 2. La sintesi elettrodebole: dinamica quantistica dei sapori: a) osservazioni preliminari; b) le interazioni deboli [...] scalari di Higgs, P è un operatore di proiezione sul sottospazio a N − M dimensioni sotteso dai bosoni di Goldstone e da un fattore supplementare di soppressione pari a me/W. La crescita lineare di fa con W è legata al fatto che nelle teorie di gauge ...
Leggi Tutto
Sistemi dinamici
Giovanni Jona-Lasinio
Ya. G. Sinai
Origini e sviluppo, di Giovanni Jona-Lasinio
Risultati recenti, di Ya. G. Sinai
Origini e sviluppo di Giovanni Jona-Lasinio
SOMMARIO: 1. Introduzione. [...] Jacobi di un punto iperbolico è detta anch'essa iperbolica. È ben noto dall'algebra lineare che nel caso di matrici iperboliche lo spazio Rn può essere rappresentato come la somma di due sottospazi lineari Rn = L(s) + L(u), dove dim L(s) (dim L(u)) è ...
Leggi Tutto
Simmetrie e invarianze
LLuigi A. Radicati di Brozolo
di Luigi A. Radicati di Brozolo
SOMMARIO: 1. Introduzione e brevi cenni storici. □ 2. La struttura dello spazio-tempo assoluto. □ 3. Il ruolo della [...] su ℋ che associa a ogni g∈G l'operatore unitario Ug. Un sottospazio ℋα⊂ℋ (o Aα(ℋ)⊂A(ℋ)) si dice G-invariante se, per ogni g che G sia il gruppo abeliano U(1), il termine non lineare nella definizione della curvatura (8) si annulla e l'equazione ...
Leggi Tutto
Hilbert, David
Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆ Azione di H.-Einstein: v. gravità [...] (r)+...; a loro volta, queste funzioni devono verificare un’equazione lineare affinché l’equazione del secondo ordine sia risolubile. Il metodo di v. sopra): v. Gödel, teorema di: III 53 d. ◆ Sottospazio di H.: data una base B di uno spazio di H., è ...
Leggi Tutto
sottospazio
sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...