L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] avanzate. Egli aveva studiato sistemi di cubiche usando un sistema lineare canonico C3(λ) al quale apparteneva anche la cosiddetta curva . In tale iperspazio esteso, Klein considerò il sottospazio dei complessi lineari speciali, che si ottiene quando ...
Leggi Tutto
vettoriale
vettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] di più elementi klvl+ ...+krvr nonché, di dipendenza e indipendenza lineare (vl, ..., vr sono indipendenti se klvl+...+ krvr=0 solo quando kl=...=kr=0). Sottospazio V' di V è l'insieme degli elementi di V ottenuto partendo da un sottoinsieme M ...
Leggi Tutto
base
base [Der. del lat. basis, dal gr. básis, "parte inferiore di una costruzione"] [ALG] Lato sul quale appoggia o s'immagina appoggiato un poligono, e, per un solido, il poligono o il cerchio su cui [...] che ogni altro vettore possa esprimersi in modo unico come combinazione lineare di essi. Se i vettori di una b. sono a quattro punti prefissati costituiscono un fascio e un sottospazio vettoriale unidimensionale, e i loro coefficienti sono ...
Leggi Tutto
nullita
nullità [Der. del lat. nullitas -atis, da nullus "nessuno"] [LSF] L'essere nullo; raro nel signif. di annullarsi. ◆ [ALG] N. di una trasformazione lineare: è la dimensionalità del nucleo (←) [...] se A si pensa come matrice di una trasformazione lineare T tra uno spazio vettoriale V e uno spazio vettoriale W, l'uno e l'altro di dimensione n, la n. di A rappresenta la dimensione del sottospazio di V ai vettori del quale corrisponde il vettore ...
Leggi Tutto
congiungente
congiungènte [agg. e s.f. Part. pres. di congiungere, dal lat. coniungere (→ congiunzione)] [ALG] Ente che ne unisce altri: per es., segmento di retta che unisce due punti di una superficie [...] spazio (anche, la congiungente, s.f.). ◆ [ALG] Spazio c.: di due spazi lineari S', S'' appartenenti a un medesimo spazio lineare S, è il minimo sottospazio connesso di S contenente sia S' che S'': per es., se S' e S'' si riducono a due punti di un ...
Leggi Tutto
rappresentazione irriducibile
Gilberto Bini
Rappresentazione lineare di un gruppo G, vale a dire un omomorfismo ϱ di G nel gruppo degli endomorfismi invertibili di uno spazio vettoriale V. Tale omomorfismo [...] induce un’azione di G sugli elementi di V data da g∙v=ϱ(g)v. Una sottorappresentazione di G è un sottospazio di V che viene mandato in sé nell’azione di G. Una rappresentazione di G si dice irriducibile se non esiste alcuna sottorapresentazione di G ...
Leggi Tutto
autospazio
autospàzio [Comp. di auto- e spazio] [ALG] Di un operatore lineare A definito su uno spazio vettoriale X, è un sottospazio A⊂X tale che se x∈A, allora Ax∈A; si usa anche dire, se λ è un autovalore [...] di A, che i vettori verificanti Ax=λx appartengono all'a. generato dall'autovalore λ. ◆ [MCC] A. instabile, neutro e stabile: v. sistemi dinamici: V 288 f ...
Leggi Tutto
sottospazio
sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...