codimensione
codimensióne [Comp. di co- e dimensione] [ALG] Per un sottospazio U, di dimensione k, di uno spazio vettoriale V con dimensione n>k, è la differenza n-k: v. trasversalità: VI 337 d. ◆ [...] [PRB] C. di una catastrofe: v. catastrofi, teoria delle : I 526 f ...
Leggi Tutto
completamento
completamento in analisi, il completamento di uno spazio metrico E è uno spazio Ẽ che contiene un sottospazio E′ isomorfo a E e denso in Ẽ. Per esempio, il completamento di Q è R, l’insieme [...] Q′ essendo formato da quei reali che corrispondono a un numero razionale. La parola completamento indica anche la costruzione di Ẽ a partire da E, costruzione che ripercorre la definizione di numero reale ...
Leggi Tutto
piano euclideo
piano euclideo con tale locuzione si intende sia il piano definito attraverso gli assiomi della → geometria euclidea sia il sottospazio di dimensione 2 di uno → spazio euclideo. In ogni [...] caso, i due ambienti sostanzialmente coincidono salvo il fatto che il secondo è costruito a partire dalla nozione di vettore e, quindi, a partire da uno spazio vettoriale su un campo K qualunque, che, ...
Leggi Tutto
spazio quoziente
spazio quoziente in algebra lineare, spazio vettoriale ottenuto da uno spazio vettoriale V su un campo K e da un suo sottospazio U come → insieme quoziente V/U (si legge: «V modulo U») [...] di dimensione finita vale la seguente relazione:
Se risulta V = U ⊕ W, se cioè lo spazio vettoriale V è somma diretta dei sottospazi U e W, allora lo spazio quoziente V/U è isomorfo a W.
In topologia, l’insieme quoziente X /∼ di uno spazio ...
Leggi Tutto
Gruppi
GGeorge W. Mackey
di George W. Mackey
SOMMARIO: 1. Introduzione e storia. □ 2. Concetti fondamentali. □ 3. Anelli di endomorfismi e gruppi lineari. □ 4. La struttura dei gruppi finiti. □ 5. Gruppi [...] di ℋ1(V) si dice ‛invariante' se Vx(ϕ) è in ℋ1 per tutti i ϕ in ℋ1 e tutti gli x in G. Dato un tale sottospazio, si ottiene una nuova rappresentazione Vℋ1 il cui spazio è ℋ1 prendendo come Vxℋ1 l'operatore che si ottiene restringendo Vx a ℋ1. Vℋ1 si ...
Leggi Tutto
iperpiano
Concetto geometrico che rappresenta l’estensione a spazi a più dimensioni dei concetti di retta e di piano. In uno spazio a due dimensioni, una retta è l’insieme dei punti (x, y) che soddisfano [...] +b P2 giace ancora sull’iperpiano. Dato uno spazio vettoriale di dimensione k+1 (➔ spazio matematico), un i. è un sottospazio vettoriale a dimensione k.
Il seguente risultato, chiamato teorema di Hahn-Banach, è anche noto con il nome di teorema dell ...
Leggi Tutto
operatori compatti
Luca Tomassini
Operatori lineari su uno spazio di Hilbert ℋ vicini in un senso opportuno agli operatori di dimensione finita, ovvero agli operatori che mandano ℋ in un sottospazio [...] P0Pi=0 per ogni i) tali che
Il proiettore P0 proietta sul sottospazio KerA={x∈ℋ tali che Ax=0}, il quale può essere di dimensione infinita; i proiettori Pi al contrario proiettano su sottospazi di dimensione finita. Come stabilisce il teorema di ...
Leggi Tutto
sottospazi, somma di due
sottospazi, somma di due in algebra lineare, se V1 e V2 sono due sottospazi di uno stesso spazio vettoriale V, allora la loro somma V1 + V2 è il sottospazio vettoriale di V costituito [...] da tutti i vettori della forma v1 + v2, con v1 appartenente a V1 e v2 appartenente a V2. Esso coincide con il sottospazio di V generato dall’unione V1 ∪ V2. Per la dimensione della somma di due sottospazi vale la formula di → Grassmann. ...
Leggi Tutto
complemento
complemento termine generico che si riferisce alla considerazione di un insieme di elementi residuali rispetto a una determinata caratteristica (→ complementazione; → complemento algebrico).
☐ [...] F ⊥) l’insieme dei vettori di V ortogonali a F rispetto al prodotto scalare dato. Il complemento ortogonale di un sottospazio è in particolare un suo complemento ed è univocamente determinato.
☐ In un reticolo, con operazioni ∧ e ∨ e dotato di unità ...
Leggi Tutto
sottospazio
sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
supplemento
suppleménto (ant. o raro suppliménto) s. m. [dal lat. supplementum, der. di supplere: v. supplire]. – 1. Ciò che serve a supplire, a sostituire una cosa mancante: quel rimbombo ... delle varie campane ... pareva, per dir così,...