• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
97 risultati
Tutti i risultati [97]
Matematica [56]
Analisi matematica [18]
Algebra [15]
Fisica [12]
Fisica matematica [11]
Storia della matematica [10]
Biografie [8]
Temi generali [6]
Biologia [5]
Geometria [4]

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] per ogni punto iniziale a∈X. Una conseguenza è il teorema delle funzioni inverse, che afferma che se F applica un intorno U di u0∈X in Y, dove X e Y sono spazi di Banach e F è C1 su U con L=F'(u0) biunivoca su Y, allora l'equazione F(u)=f ha un'unica ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] o coincida con l'intero piano complesso. La proposizione più generale che si può formulare riguarda il caso in cui E è uno spazio di Banach (su ℂ) e U è continuo. Allora, lo spettro Sp(U) è compatto e non vuoto. Ciò segue dall'osservazione che se ∥U ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura Maurice Sion La teoria della misura Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] statistica, dalle equazioni differenziali all'analisi armonica. La completezza consente di individuare gli esempi più importanti ‒ in realtà i prototipi ‒ di spazi di Banach e di Hilbert in analisi funzionale. Essa è stata estesa a integrali rispetto ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Convessità

Enciclopedia della Scienza e della Tecnica (2007)

Convessità Arrigo Cellina La convessità è un concetto della matematica elementare; le parole concavo e convesso fanno parte del linguaggio quotidiano. Eppure questo semplice concetto, unito ad altre [...] P in S tale che P∈F(P). Le estensioni di questo risultato a spazi di Banach e a spazi localmente convessi, parallele a quelle di Schauder e Tychonoff per il teorema di Brouwer, venivano ottenute rispettivamente da H. Frederich Boheneblust e Samuel ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – FUNZIONI A QUADRATO SOMMABILE – SPAZIO LOCALMENTE CONVESSO – CALCOLO DELLE VARIAZIONI – FUNZIONE DIFFERENZIABILE

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti Roger Cooke Brian Griffith La topologia degli insiemi di punti La topologia generale o topologia degli insiemi [...] i risultati condussero a interessanti teoremi in analisi. Queste strutture portarono a quel tipo di teorie topologicamente orientate come l'analisi funzionale, gli spazi di Banach e gli anelli normati, non più parte della topologia in senso stretto. ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

vettore

Enciclopedia della Matematica (2013)

vettore vettore nozione suggerita originariamente dallo studio di grandezze fisiche, quali velocità, accelerazione, forza ecc. (dette grandezze vettoriali) la cui descrizione non può esaurirsi in un [...] : u, v, ... Il modulo del vettore è indicato con |v| oppure v (tuttavia, quando si tratti di spazi di → Banach, e in particolare di spazi di → Hilbert, si usa per convenzione indicare i vettori con lettera corsiva non in neretto). Due vettori ... Leggi Tutto
TAGS: RELAZIONE DI EQUIVALENZA – CORRISPONDENZA BIUNIVOCA – LINEARMENTE INDIPENDENTI – SISTEMA DI RIFERIMENTO – COORDINATE CARTESIANE

distribuzioni, teoria delle

Enciclopedia della Matematica (2013)

distribuzioni, teoria delle distribuzioni, teoria delle generalizzazione della teoria classica delle funzioni dell’analisi matematica. Tale generalizzazione, dovuta principalmente a L. Schwartz e S.L. [...] struttura molto complicata, nelle applicazioni si impiegano sovente spazi più ristretti, ma dotati di proprietà più forti. Un tipico caso è quello degli spazi di Sobolev, che sono spazi di Banach di funzioni che ammettono derivate (deboli) fino a un ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – SPAZI VETTORIALI TOPOLOGICI – CALCOLO DELLE VARIAZIONI – EQUAZIONE DIFFERENZIALE – FUNZIONI GENERALIZZATE

norma

Enciclopedia della Matematica (2013)

norma norma applicazione ‖...‖: V → [0, +∞) definita su uno spazio vettoriale reale o complesso e caratterizzata dalle seguenti proprietà: • ‖v‖ ≥ 0, ∀v ∈ V e ‖v‖ = 0 se e solo se v = 0; • ‖k ⋅ v‖ = [...] questa branca dell’analisi dove si studiano le proprietà degli spazi normati e completi nella metrica indotta dalla norma (spazi di Banach). In particolare, negli spazi di dimensione infinita si studiano le proprietà delle applicazioni lineari, non ... Leggi Tutto
TAGS: PRODOTTO SCALARE DEFINITO POSITIVO – APPLICAZIONI LINEARI – ANALISI FUNZIONALE – SPAZIO VETTORIALE – NUMERO COMPLESSO

operatori lineari

Enciclopedia della Scienza e della Tecnica (2008)

operatori lineari Luca Tomassini Un’appli­cazione A:E→F di uno spazio lineare E in uno spazio lineare F (anche coincidente con E) su un campo K (che qui identificheremo con i numeri complessi ℂ) tale [...] δ>0 tale che ∣∣x1−x2∣∣〈δ implica ∣∣Ax1−Ax2∣∣〈ε. In questo caso la continuità è equivalente alla limitatezza: un operatore lineare tra spazi di Banach E e F è continuo se e solo se Il numero reale cA definisce una norma dell’operatore A; dotato ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: OPERATORI LINEARI CONTINUI – SPAZIO VETTORIALE – ALGEBRA DI BANACH – FUNZIONE CONTINUA – NUMERI COMPLESSI
Mostra altri risultati Nascondi altri risultati su operatori lineari (2)
Mostra Tutti

problema ben posto

Enciclopedia della Matematica (2013)

problema ben posto problema ben posto nozione formulata da J. Hadamard aggiungendo alle usuali richieste di esistenza e unicità della soluzione quella di dipendenza continua dai dati. Per precisare questa [...] ) la soluzione dipende con continuità dal dato, cioè se d′ → d (nel senso della topologia di D) la corrispondente soluzione x′ → x (nel senso di X). Se D e X sono spazi di Banach, la dipendenza continua si scrive ‖x′ − x‖X → 0 per ‖d′ − d ‖D → 0. Ciò ... Leggi Tutto
TAGS: SPAZIO VETTORIALE TOPOLOGICO – CONDIZIONE DI LIPSCHITZ – PRINCIPIO DEL MASSIMO – PROBLEMA DI DIRICHLET – EQUAZIONE DI LAPLACE
1 2 3 4 5 6 7 8 ... 10
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali