Biologia
In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone).
Filosofia
In filosofia analitica, un’espressione [...] o. svolgono un ruolo fondamentale nella meccanica quantistica, nel cui schema teorico gli stati di un sistema sono rappresentati dai vettori di uno spaziodiHilbert ℋ e le sue variabili dinamiche da o. lineari in ℋ (➔ meccanica); in questo contesto ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] nell'articolo Formes bilinéaires sur les ensembles convexes la sua famosa diseguaglianza variazionale, dimostrando che ‒ dato uno spaziodiHilbert reale V e una forma bilineare continua su di esso a(u,v), tale che per un dato α>0 e per ogni v∈V ...
Leggi Tutto
fìsica matemàtica Disciplina scientifica che si propone di descrivere in termini matematici rigorosi i fenomeni fisici.
Abstract di approfondimento da Fisica matematica di Gianfausto Dell’Antonio (Enciclopedia [...] la conseguente descrizione dello spaziodiHilbert associato al campo elettromagnetico ‘quantizzato’ come somma diretta dispazi, parametrizzati da un indice n intero, ciascuno descritto in termini di numero di occupazione di fotoni di frequenza nL-1 ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] chiama cubo (o mattone) diHilbert il sottoinsieme costituito dalla totalità delle di un sottoinsieme dello spazio. Per base di uno s. topologico S si intende una famiglia B di aperti non vuoti di S tali che ogni aperto di S sia unione di elementi di ...
Leggi Tutto
spettro In varie discipline scientifiche e tecniche, termine frequentemente usato per indicare la composizione armonica di una grandezza variabile nel tempo.
Botanica
S. biologico Lo s. ottenuto dalle [...] ; per es., vale l’uguaglianza f(σ(T))=σ(f(T)) (teorema dell’applicazione spettrale). Se T è un operatore chiuso in uno spaziodiHilbert, l’insieme dei numeri complessi tali che l’immagine λI−T non è chiusa si dice s. essenziale, si indica con σε(T ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] diHilbert. Grazie ai contributi di A.M. Gleason, di D. Montgomery e di L. Zippin viene risolta una parte del V problema diHilbert coerente F su uno spaziodi Stein X si ha: (A) in ogni x∈X, la spiga Fx è generata dalle sezioni globali di F; (B) Hq ...
Leggi Tutto
Nodi e fisica
Louis H. Kauffman
Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] e per cui Eψk = Ekψk. Un ‛osservabile' E è un operatore hermitiano in uno spaziodiHilbertdi funzioni d'onda. Che gli operatori hermitiani abbiano autovalori reali è in accordo con il fatto che tali autovalori possono essere interpretati ...
Leggi Tutto
La grande scienza. Fisica matematica: recenti sviluppi
Gianfausto Dell'Antonio
Fisica matematica: recenti sviluppi
La fisica matematica si può definire come la disciplina scientifica che si propone [...] dello spaziodiHilbert associato al campo elettromagnetico 'quantizzato' come somma diretta dispazi, parametrizzati da un indice n intero, ciascuno descritto in termini di numero di occupazione di fotoni di frequenza (e quindi di energia ...
Leggi Tutto
vettore
vettóre [agg. m. e s.m. (per il f. → vettrice) Der. del lat. vector -oris "conducente, portatore", dal part. pass. vectus di vehere "condurre, portare"] [ALG] Ente che permette di descrivere [...] : v. gruppi, rappresentazione dei: III 122 e. ◆ V. di stato: (a) [TRM] v. colonna le cui componenti sono le variabili di stato di un sistema. (b) [MCQ] v. nello spaziodiHilbert che corrisponde allo stato di un sistema. ◆ [EMG] [MCC] V. d'onda: il ...
Leggi Tutto
varieta
varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] in cui l'ipotesi che i domini delle carte locali siano aperti di Rn è sostituita da quella che detti domini siano aperti di un dato spaziodiHilbert o di Banach: v. varietà differenziabili infinito-dimensionali. ◆ [ALG] V. differenziale: lo stesso ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...