spaziospàzio [Der. del lat. spatium, probab. da patere "essere aperto"] [FAF] Con signif. intuitivo astratto e assoluto, il luogo illimitato in cui tutti gli oggetti materiali appaiono collocati, di [...] ogni punto è definita una nozione di intorno, che permette di introdurre il concetto di continuità delle funzioni: v. spaziotopologico. ◆ [ALG] S. vettoriale: con rifer. a un campo K (reale, complesso o anche più generale), un insieme V di elementi ...
Leggi Tutto
vettorialevettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] che ne particolarizzano la collocazione tra tutti gli spazivettoriali. Una proprietà addizionale che s'incontra frequentemente [ALG] Spazio v. tangente: v. varietà differenziabili infinito-dimensionali: VI 493 f. ◆ [ALG] Spazio v. topologico: v. ...
Leggi Tutto
varieta
varietà [Der. del lat. varietas -atis, da varius "vario"] [ALG] Nozione che generalizza quella di curva e superficie; intuitivamente, si presenta come un ente geometrico a n dimensioni (con n [...] almeno un punto di accumulazione, anch'esso appartenente alla v. (→ compatto). ◆ [ALG] V. complessa: spaziotopologico modellato localmente su Cn (lo spaziovettoriale delle n-ple di numeri complessi) anziché su Rn (numeri reali); tale nozione può ...
Leggi Tutto
dimensione
dimensióne [Der. del lat. dimensio -onis "misura", dal part. pass. dimensus di dimetiri "misurare"] [MCQ] D. anomala: una d. operatoriale diversa da quella canonica di una data teoria. ◆ [MCC] [...] . di uno spaziovettoriale: il massimo numero di vettori linearmente indipendenti in quello spazio; così, una linea, una superficie e lo spazio ordinario hanno d., rispettiv., 1, 2, e 3. Questa nozione elementare si generalizza a spazitopologici nel ...
Leggi Tutto
funzionale
funzionale [agg. e s.m. Der. di funzione] [agg.] [ANM] Analisi, o calcolo, f.: teoria che generalizza agli spazi di funzioni i metodi e i risultati del-l'analisi matematica classica: v. funzionale, [...] un comune campo di definizione e la struttura di spaziovettoriale, nel quale è possibile introdurre un'opportuna nozione di intorno (spazio f. topologico) o addirittura di distanza (spazio f. metrico). ◆ [ANM] Trasformazione f.: trasformazione tra ...
Leggi Tutto
Sistemi dinamici
Giovanni Jona-Lasinio
Ya. G. Sinai
Origini e sviluppo, di Giovanni Jona-Lasinio
Risultati recenti, di Ya. G. Sinai
Origini e sviluppo di Giovanni Jona-Lasinio
SOMMARIO: 1. Introduzione. [...] soluzioni di un sistema di equazioni differenziali ordinarie, dato dalla (1), o campi vettoriali.
La classe di differenziabilità r determina una topologia nello spazio dei SD da cui dipendono alcune proprietà e alcuni risultati. Una proprietà di un ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] Poincaré introdusse molti degli strumenti necessari per lo studio topologico delle varietà a più dimensioni e in breve tempo anni Ottanta, ma la teoria assiomatica astratta degli spazivettoriali si sarebbe affermata solo molto più tardi intorno al ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
campo
s. m. [lat. campus «campagna, pianura» poi «campo di esercitazioni, campo di battaglia»]. – Termine che ha assunto (per evoluzione dai sign. principali che già aveva nella lingua d’origine) notevole varietà di accezioni e di usi, rimanendo...