Storia della civiltà europea a cura di Umberto Eco (2014)
Giorgio Strano
Il contributo è tratto da Storia della civiltà europea a cura di Umberto Eco, edizione in 75 ebook
La matematica del Novecento è stata paragonata nel 1951 da Hermann Weyl al delta del [...] nuova classe dispazi che coniuga la nozione dispazio metrico e quella dispazio vettoriale: uno spaziodiBanach è uno spazio vettoriale normato completo. Uno spaziodi Hilbert può essere definito come un caso particolare dispaziodiBanach, anche ...
Leggi Tutto
continuita
continuità proprietà che, in diversi contesti matematici, precisa l’idea intuitiva di mancanza di interruzione. Il passaggio dall’idea intuitiva alla precisazione matematica del concetto non [...] che ogni funzione continua è uniformemente continua e C0(E) è uno spaziodiBanach.
Continuità e continuità assoluta di una funzione reale
Una funzione ƒ reale di variabile reale, continua in un intervallo [a, b] si dice assolutamente continua ...
Leggi Tutto
Hilbert, David
Hilbert ⟨hìlbërt⟩ David [STF] (Königsberg 1862 - Gottinga 1943) Prof. di matematica nell'univ. di Gottinga (1895); socio straniero dei Lincei (1903). ◆ Azione di H.-Einstein: v. gravità [...] H.: data una base B di uno spaziodi H., è lo spazio vettoriale generato da un sottoinsieme B'ÌB di elementi della base. ◆ Spaziodi H.: estensione dello spazio euclideo, e precis. uno spaziodiBanach nel quale la norma di un elemento è indotta dal ...
Leggi Tutto
operatori lineari
Luca Tomassini
Un’applicazione A:E→F di uno spazio lineare E in uno spazio lineare F (anche coincidente con E) su un campo K (che qui identificheremo con i numeri complessi ℂ) tale [...] δ>0 tale che ∣∣x1−x2∣∣〈δ implica ∣∣Ax1−Ax2∣∣〈ε. In questo caso la continuità è equivalente alla limitatezza: un operatore lineare tra spazidiBanach E e F è continuo se e solo se
Il numero reale cA definisce una norma dell’operatore A; dotato ...
Leggi Tutto
risolvente
risolvente in algebra, termine sinonimo di equazione risolvente, cioè equazione ausiliaria mediante la quale si rende più agevole la risoluzione di un’altra data equazione. Un primo esempio [...] ƒ(x) = 0.
☐ In analisi funzionale, il termine indica un operatore definito da (T − λI)−1, essendo T un operatore lineare limitato su uno spaziodiBanach complesso E, I l’operatore identità e λ un numero complesso appartenente all’insieme risolvente ...
Leggi Tutto
successione numerica
successione numerica successione {an}, i cui termini sono numeri reali o complessi. Una successione si dice monotòna crescente (decrescente) se per ogni n è an ≤ an+1 (an ≥ an+1). [...] le successioni costituisce uno spazio vettoriale, in cui si può introdurre una metrica ma non una norma. Il sottospazio delle successioni limitate, dotato della norma dell’estremo superiore, ∥x∥ = sup |xi|, è uno spaziodi → Banach indicato con l ∞. ...
Leggi Tutto
trasformata di Fourier
Luca Tomassini
Una trasformazione integrale che mappa una funzione a valori complessi f(x):ℝn→ℂ nella sua corrispondente trasformata di Fourier (detta anche funzione spettrale [...] (ossia perché l’espressione in [1] abbia significato) è l’esistenza dell’integrale
[4] formula.
È questa la norma dello spaziodiBanach L1(ℝn,ℂ) delle funzioni sommabili su ℝn; non è difficile dimostrare che per f(x) sommabile la funzione f∼(p) è ...
Leggi Tutto
operatori compatti
Luca Tomassini
Operatori lineari su uno spaziodi Hilbert ℋ vicini in un senso opportuno agli operatori di dimensione finita, ovvero agli operatori che mandano ℋ in un sottospazio [...] degli operatori. Notiamo che tali definizioni hanno senso anche nel caso di operatori su uno spaziodiBanach (normato e completo) E. Ogni operatore compatto hermitiano su uno spaziodi Hilbert ℋ è diagonalizzabile, nel senso che esistono dei numeri ...
Leggi Tutto
norma
Luca Tomassini
Sia X uno spazio vettoriale. Un’applicazione ∣∣∙∣∣:X→ℝ si dice una norma se verifica i seguenti assiomi: (a) ∣∣x∣∣≥0, per ogni x∈X; ∣∣x∣∣=0 se e soltanto se x=0; (b) ∣∣λx∣∣=∣λ∣·∣∣x∣∣, [...] dice spaziodiBanach. Non è affatto necessario che lo spazio normato (X,∣∣∙∣∣) sia uno spazio vettoriale a dimensione finita. Al contrario, la nozione astratta di norma fu introdotta da Stefan Banach proprio al fine di studiare le proprietà dispazi ...
Leggi Tutto
generatore di un semigruppo
Luca Tomassini
Siano X uno spaziodiBanach con norma ∣∣∙∣∣ e B(X) l’insieme degli operatori continui su di esso. Si dice semigruppo di operatori {T(t)∣t≥0} una famiglia [...] [2] è soddisfatta se vale la condizione di Hille-Yosida: ∣∣R(λ,A)∣∣≤M(λ−ω)−1. Il teorema di Hille-Yosida può essere generalizzato da un lato al caso dispazi vettoriali topologici e dall’altro a quello di operatori non lineari.
→ Equazioni funzionali ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...