• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
271 risultati
Tutti i risultati [271]
Matematica [140]
Fisica [41]
Algebra [40]
Analisi matematica [40]
Storia della matematica [33]
Geometria [23]
Fisica matematica [24]
Temi generali [19]
Biografie [18]
Filosofia [16]

hermitiano

Dizionario delle Scienze Fisiche (1996)

hermitiano hermitiano [agg. e s. Der. del cognome di C. Hermite] (a) [ALG] [ANM] Qualifica di enti legati in qualche modo a forme h. e a matrici h. (v. oltre): metriche h., operatore h., prodotti h., [...] B, B è un operatore hermitiano. ◆ [ANM] Operatore h., o hermitiano s.m.: operatore lineare definito in un sottoinsieme D(a) denso in uno spazio di Hilbert H, tale che per ogni x, y in D(a) si ha (Ax,y)=(x,Ay); quando A è limitato, si può estendere l ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

C*-algebre

Enciclopedia della Scienza e della Tecnica (2008)

C*-algebre Luca Tomassini Un’algebra normata (o algebra di Banach A) è un’algebra sul corpo dei numeri complessi ℂ dotata di una norma ∣∣∙∣∣ che soddisfa la relazione ∣∣ab∣∣≤∣∣a∣∣∙∣∣b∣∣, dove a e b [...] algebre sono: (a) l’algebra C0(X) delle funzioni continue su uno spazio compatto X; (b) l’algebra B(ℋ) degli operatori lineari continui su uno spazio di Hilbert ℋ o qualunque sua sottoalgebra chiusa nella topologia indotta da B(ℋ). In un certo senso ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – MECCANICA QUANTISTICA – SPAZIO DI HILBERT – FUNZIONI CONTINUE – NUMERO COMPLESSO
Mostra altri risultati Nascondi altri risultati su C*-algebre (1)
Mostra Tutti

Lagrange, identita di

Enciclopedia della Matematica (2013)

Lagrange, identita di Lagrange, identità di denominazione con cui si indicano più relazioni di identità, tutte riferibili a J.-L. Lagrange. □ Nel campo dei numeri reali (o in quello dei numeri complessi), [...] α e β, risulta cioè u e ν sono funzioni ortogonali nello spazio di Hilbert con peso Le ipotesi possono essere indebolite, consentendo al peso r(x) di annullarsi in punti isolati di [a, b], e, modificando opportunamente il problema ai limiti ... Leggi Tutto
TAGS: OPERATORE DIFFERENZIALE – EQUAZIONE DIFFERENZIALE – CONDIZIONI AI LIMITI – PRODOTTO VETTORIALE – CALCOLO VETTORIALE

teorema di Hellmann-Feynman

Enciclopedia della Scienza e della Tecnica (2008)

teorema di Hellmann-Feynman Mauro Cappelli Risultato che descrive la relazione tra un operatore autoaggiunto T(λ) (assunto dipendente da un parametro λ) su uno spazio di Hilbert e i suoi autovalori, [...] ricavare tutte le forze in gioco usando i risultati dell’elettromagnetismo classico. Va osservato, tuttavia, che il teorema di Hellmann-Feynman vale rigorosamente solo per autofunzioni esatte dell’operatore. Tale teorema deve il nome a Hans Hellmann ... Leggi Tutto
CATEGORIA: MECCANICA QUANTISTICA

unitario

Dizionario delle Scienze Fisiche (1996)

unitario unitàrio [agg. Der. di unità] [LSF] Che è u-guale all'unità, si fonda sull'unità o s'ispira a criteri di unità. ◆ [CHF] Nella tecnologia chimica, di trasformazioni per le quali possono essere [...] matrice quadrata A per la quale AA∗=A∗A=I, dove A∗ è la matrice coniugata trasposta di A e I è la matrice identità. ◆ [ANM] Operatore u.: operatore lineare A definito su uno spazio di Hilbert H tale che per ogni coppia a, b in H si ha (Aa, Ab)=(a, b ... Leggi Tutto
CATEGORIA: TEMI GENERALI – FISICA MATEMATICA – METROLOGIA – ALGEBRA – ANALISI MATEMATICA

completo

Dizionario delle Scienze Fisiche (1996)

completo complèto [agg. Der. del part. pass. completus del lat. complere "compiere sino alla fine" e quindi "che ha tutte le sue parti, intero"] [ALG] [ANM] Di ente non contenuto in altro ente più ampio; [...] complessi c₁, ..., cn tale che la norma del-l'elemento x-Σk ckxak per k da 1 a n risulta minore di ε; in uno spazio di Hilbert ciò equivale a dire che l'unico elemento ortogonale a tutti gli elementi del sistema è l'elemento nullo; v. anche equazioni ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

aggiunzione

Enciclopedia della Matematica (2013)

aggiunzione aggiunzione relazione che lega tra loro matrici o, più in generale, operatori lineari in uno spazio di Hilbert. Se A è una matrice quadrata reale, allora la sua trasposta AT viene anche detta [...] per cui A = AH e coincidono dunque con le matrici hermitiane. In modo analogo si definisce l’operatore aggiunto di un operatore lineare continuo A in uno spazio di Hilbert reale (o complesso) come l’operatore lineare continuo che soddisfa la formula ... Leggi Tutto
TAGS: MATRICE TRASPOSTA CONIUGATA – OPERATORE LINEARE CONTINUO – PRODOTTO SCALARE STANDARD – PRODOTTO HERMITIANO – MATRICI SIMMETRICHE

proiettore

Enciclopedia della Matematica (2013)

proiettore proiettore termine utilizzato sia in analisi sia in logica. ☐ In analisi, si dice proiettore in uno spazio vettoriale X un operatore lineare P tale che P 2 = P. Questa nozione generalizza [...] in uno e un solo modo nella somma v + h, con v = P x ∈ V e h = x − v ∈ V⊥. Se X è uno spazio di Hilbert (dove i vettori sono indicati in corsivo) e V un suo sottospazio, la proiezione si ottiene costruendo il vettore v ∈ V che rende minima la ... Leggi Tutto
TAGS: SOTTOSPAZIO ORTOGONALE – FUNZIONE RICORSIVA – SPAZIO VETTORIALE – SPAZIO DI HILBERT – OPERATORE LINEARE

qubit

Enciclopedia della Matematica (2013)

qubit qubit (contrazione di quantum bit) unità di informazione elementare della computazione quantistica (→ computer quantistico). È omologo al → bit della computazione classica, con la differenza che, [...] dove a e b sono numeri complessi tali che |a|2 + |b|2 ≤ 1. Lo stato di un qubit è quindi un vettore unitario di uno spazio di → Hilbert di dimensione 2 su C di cui |0> e |1> costituiscono una base ortonormale. Dato il carattere quantistico del ... Leggi Tutto
TAGS: COMPUTAZIONE QUANTISTICA – UNITÀ DI INFORMAZIONE – SPAZIO DI → HILBERT – BASE ORTONORMALE – NUMERI COMPLESSI

ortonormalizzazione

Enciclopedia della Matematica (2013)

ortonormalizzazione ortonormalizzazione procedimento mediante il quale, a partire da un sistema linearmente indipendente di elementi di uno spazio di Hilbert, u1, u2, ..., un, ..., si costruisce un sistema [...] per esempio per ottenere le diverse famiglie di polinomi ortogonali a partire dalle potenze xn, in uno spazio L2(a, b) con peso (→ spazio Lp(Ω)). ☐ In geometria analitica, un sistema di riferimento cartesiano è detto ortonormale o ortonormato ... Leggi Tutto
TAGS: ORTONORMALIZZAZIONE DI GRAM-SCHMIDT – SISTEMA DI RIFERIMENTO CARTESIANO – LINEARMENTE INDIPENDENTE – GEOMETRIA ANALITICA – POLINOMI ORTOGONALI
1 2 3 4 5 6 7 8 ... 10 ... 28
Vocabolario
hilbertiano
hilbertiano 〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali