normale
normale [agg. Der. di norma] [LSF] Che segue la norma o una regola generale, anche nel senso di presentare caratteristiche medie (per es., obiettivo fotografico n. è quello che ha un angolo di [...] dalla retta). ◆ [ANM] Operatore n.: operatore lineare A definito su uno spaziodiHilbert tale che A∗A=AA∗, dove A∗ è l'aggiunto di A (v. algebre di operatori: I 95 a). ◆ [PRB] Valore n.: di una distribuzione, lo stesso che moda della distribuzione. ...
Leggi Tutto
scalare
scalare [agg. e s.m. Der. del lat. scalaris, nel signif. figurato "che varia secondo una scala graduata", da scala "scala"] [ALG] In contrapp. a vettoriale e tensoriale, di grandezza che è univocamente [...] μv₃)=λ(v₁, v₂)+μ(v₁, v₃) (sesquilinearità). Uno spazio vettoriale infinitodimensionale dotato di prodotto s. e completo rispetto alla metrica indotta da esso è detto spaziodiHilbert. ◆ [RGR] Teorie s.-tensoriali: v. unificazione dei campi classici ...
Leggi Tutto
algebre di von Neumann
Luca Tomassini
Un’algebra di von Neumann C è una sotto-algebra involutiva dell’algebra B(ℋ) degli operatori lineari limitati (ovvero continui) su uno spaziodiHilbert ℋ (con [...] più astratta, dovuta a Jacques Dixmier e Shoikiro Sakai: un’algebra di von Neumann è una C*-algebra che, come spazio normato, è il duale di uno spaziodi Banach. Le algebre di von Neumann, proprio come le C*-algebre, possono essere viste come ...
Leggi Tutto
hermitiano
hermitiano [agg. e s. Der. del cognome di C. Hermite] (a) [ALG] [ANM] Qualifica di enti legati in qualche modo a forme h. e a matrici h. (v. oltre): metriche h., operatore h., prodotti h., [...] B, B è un operatore hermitiano. ◆ [ANM] Operatore h., o hermitiano s.m.: operatore lineare definito in un sottoinsieme D(a) denso in uno spaziodiHilbert H, tale che per ogni x, y in D(a) si ha (Ax,y)=(x,Ay); quando A è limitato, si può estendere l ...
Leggi Tutto
C*-algebre
Luca Tomassini
Un’algebra normata (o algebra di Banach A) è un’algebra sul corpo dei numeri complessi ℂ dotata di una norma ∣∣∙∣∣ che soddisfa la relazione ∣∣ab∣∣≤∣∣a∣∣∙∣∣b∣∣, dove a e b [...] algebre sono: (a) l’algebra C0(X) delle funzioni continue su uno spazio compatto X; (b) l’algebra B(ℋ) degli operatori lineari continui su uno spaziodiHilbert ℋ o qualunque sua sottoalgebra chiusa nella topologia indotta da B(ℋ). In un certo senso ...
Leggi Tutto
unitario
unitàrio [agg. Der. di unità] [LSF] Che è u-guale all'unità, si fonda sull'unità o s'ispira a criteri di unità. ◆ [CHF] Nella tecnologia chimica, di trasformazioni per le quali possono essere [...] matrice quadrata A per la quale AA∗=A∗A=I, dove A∗ è la matrice coniugata trasposta di A e I è la matrice identità. ◆ [ANM] Operatore u.: operatore lineare A definito su uno spaziodiHilbert H tale che per ogni coppia a, b in H si ha (Aa, Ab)=(a, b ...
Leggi Tutto
completo
complèto [agg. Der. del part. pass. completus del lat. complere "compiere sino alla fine" e quindi "che ha tutte le sue parti, intero"] [ALG] [ANM] Di ente non contenuto in altro ente più ampio; [...] complessi c₁, ..., cn tale che la norma del-l'elemento x-Σk ckxak per k da 1 a n risulta minore di ε; in uno spaziodiHilbert ciò equivale a dire che l'unico elemento ortogonale a tutti gli elementi del sistema è l'elemento nullo; v. anche equazioni ...
Leggi Tutto
Uryson Pavel Samuilovic
Uryson (o Urysohn) 〈urïsòn〉 Pavel Samuilovič [STF] (Odessa 1898 - Batz, Loira, 1924) Libero docente di matematica nell'univ. di Mosca (1921). ◆ [ALG] Lemma di U.: afferma che [...] che f(x)=0 se x∈A, f(x)=1 se x∈B, 0≤f(x)≤1 se x∉A⋃B. ◆ [ANM] Teorema di U.: ogni spazio topologico normale, provvisto di una base numerabile di aperti, è omeomorfo a un sottospazio di uno spaziodiHilbert (e pertanto, in partic., è metrizzabile). ...
Leggi Tutto
semidefinito
semidefinito [Comp. di semi- e definito] [ALG] Matrice s. positiva: matrice A dotata di autovalori λi≥0 per ogni i; ha la proprietà che per ogni x∈Rn si ha (x, Ax)≥0; il segno di uguaglianza, [...] però, può essere realizzato anche da vettori x non nulli, e ciò la distingue da una matrice definita positiva. ◆ [ANM] Operatore s. positivo: operatore A su uno spaziodiHilbert H per cui valga (x, Ax)≥0 per ogni elemento x∈H. ...
Leggi Tutto
hilbertianohilbertiano [agg. Der. del cognome di D. Hilbert] [ALG] [ANM] Qualifica di enti e nozioni introdotti da D. Hilbert, equivalente a "diHilbert": spazio h. o spaziodiHilbert, ecc. ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...