• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
99 risultati
Tutti i risultati [99]
Matematica [56]
Analisi matematica [23]
Algebra [16]
Fisica [12]
Fisica matematica [11]
Storia della matematica [11]
Biologia [5]
Temi generali [5]
Biografie [4]
Antropologia fisica [4]

paradosso

Enciclopedia della Matematica (2013)

paradosso paradosso (dal greco pará, «oltre, contro», e dóxa, «opinione») termine applicato, nella sua accezione più ampia, a qualsiasi affermazione o ragionamento che contrasti con l’opinione comune [...] persone è 50, la probabilità è circa il 97%. Paradossi di teoria della misura Un esempio di paradosso di questo tipo è il paradosso di Banach-Tarski, dal nome dei due scienziati polacchi S. Banach e A. Tarski, il primo matematico, il secondo logico ... Leggi Tutto
TAGS: PRINCIPIO DEL TERZO ESCLUSO – PARADOSSO DI BANACH-TARSKI – PARADOSSO DI BURALI-FORTI – CORRISPONDENZA BIUNIVOCA – AGGETTIVO DETERMINATIVO

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti Roger Cooke Brian Griffith La topologia degli insiemi di punti La topologia generale o topologia degli insiemi [...] i risultati condussero a interessanti teoremi in analisi. Queste strutture portarono a quel tipo di teorie topologicamente orientate come l'analisi funzionale, gli spazi di Banach e gli anelli normati, non più parte della topologia in senso stretto. ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

VITALI, Giuseppe

Dizionario Biografico degli Italiani (2020)

VITALI, Giuseppe Enrico Rogora – Nacque a Ravenna il 26 agosto 1875 da Domenico e da Zenobia Casadio. Nel 1895 si iscrisse alla facoltà di matematica presso l’Università di Bologna dove conobbe Cesare [...] campo dell’analisi reale. Tra questi spicca il Teorema di Banach-Vitali (Sulle funzioni continue, in Fundamenta mathematicae, VIII ambizioso programma per la costruzione di un calcolo differenziale assoluto negli spazi di Hilbert. Vitali raccolse i ... Leggi Tutto
TAGS: CONDIZIONE NECESSARIA E SUFFICIENTE – ACCADEMIA DELLE SCIENZE DI TORINO – SCUOLA NORMALE SUPERIORE DI PISA – FUNZIONE A VARIAZIONE LIMITATA – TEORIA DELL’INTEGRAZIONE
Mostra altri risultati Nascondi altri risultati su VITALI, Giuseppe (3)
Mostra Tutti

vettore

Enciclopedia della Matematica (2013)

vettore vettore nozione suggerita originariamente dallo studio di grandezze fisiche, quali velocità, accelerazione, forza ecc. (dette grandezze vettoriali) la cui descrizione non può esaurirsi in un [...] : u, v, ... Il modulo del vettore è indicato con |v| oppure v (tuttavia, quando si tratti di spazi di → Banach, e in particolare di spazi di → Hilbert, si usa per convenzione indicare i vettori con lettera corsiva non in neretto). Due vettori ... Leggi Tutto
TAGS: RELAZIONE DI EQUIVALENZA – CORRISPONDENZA BIUNIVOCA – LINEARMENTE INDIPENDENTI – SISTEMA DI RIFERIMENTO – COORDINATE CARTESIANE

distribuzioni, teoria delle

Enciclopedia della Matematica (2013)

distribuzioni, teoria delle distribuzioni, teoria delle generalizzazione della teoria classica delle funzioni dell’analisi matematica. Tale generalizzazione, dovuta principalmente a L. Schwartz e S.L. [...] struttura molto complicata, nelle applicazioni si impiegano sovente spazi più ristretti, ma dotati di proprietà più forti. Un tipico caso è quello degli spazi di Sobolev, che sono spazi di Banach di funzioni che ammettono derivate (deboli) fino a un ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – SPAZI VETTORIALI TOPOLOGICI – CALCOLO DELLE VARIAZIONI – EQUAZIONE DIFFERENZIALE – FUNZIONI GENERALIZZATE

norma

Enciclopedia della Matematica (2013)

norma norma applicazione ‖...‖: V → [0, +∞) definita su uno spazio vettoriale reale o complesso e caratterizzata dalle seguenti proprietà: • ‖v‖ ≥ 0, ∀v ∈ V e ‖v‖ = 0 se e solo se v = 0; • ‖k ⋅ v‖ = [...] questa branca dell’analisi dove si studiano le proprietà degli spazi normati e completi nella metrica indotta dalla norma (spazi di Banach). In particolare, negli spazi di dimensione infinita si studiano le proprietà delle applicazioni lineari, non ... Leggi Tutto
TAGS: PRODOTTO SCALARE DEFINITO POSITIVO – APPLICAZIONI LINEARI – ANALISI FUNZIONALE – SPAZIO VETTORIALE – NUMERO COMPLESSO

problema ben posto

Enciclopedia della Matematica (2013)

problema ben posto problema ben posto nozione formulata da J. Hadamard aggiungendo alle usuali richieste di esistenza e unicità della soluzione quella di dipendenza continua dai dati. Per precisare questa [...] ) la soluzione dipende con continuità dal dato, cioè se d′ → d (nel senso della topologia di D) la corrispondente soluzione x′ → x (nel senso di X). Se D e X sono spazi di Banach, la dipendenza continua si scrive ‖x′ − x‖X → 0 per ‖d′ − d ‖D → 0. Ciò ... Leggi Tutto
TAGS: SPAZIO VETTORIALE TOPOLOGICO – CONDIZIONE DI LIPSCHITZ – PRINCIPIO DEL MASSIMO – PROBLEMA DI DIRICHLET – EQUAZIONE DI LAPLACE

Cauchy, criteri di convergenza di

Enciclopedia della Matematica (2013)

Cauchy, criteri di convergenza di Cauchy, criteri di convergenza di criteri che forniscono una condizione necessaria e sufficiente per l’esistenza del limite finito di una funzione, di una successione [...] che per ogni n > N e per ogni p ≥ 0 risulti Questi enunciati si estendono a spazi metrici completi e in particolare agli spazi di Banach sostituendo i moduli con le distanze o le norme, anzi, la loro validità equivale alla completezza dello ... Leggi Tutto
TAGS: CONDIZIONE NECESSARIA E SUFFICIENTE – PUNTO DI ACCUMULAZIONE – SPAZI DI BANACH – SPAZI METRICI – LIMITE

Sobolev, spazi di

Enciclopedia della Matematica (2013)

Sobolev, spazi di Sobolev, spazi di spazi Wm,p(Ω), con m ∈ N, p ∈ [1, ∞], Ω ⊂ Rn, costituiti dalle funzioni appartenenti a → spazi Lp(Ω) dotati di derivate (nel senso delle → distribuzioni) di ogni ordine [...] volta funzioni appartenenti a Lp(Ω). Essi sono spazi di → Banach con la norma per p < ∞, dove la derivata Dαƒ, corrispondente al multiindice α = (m1, m2, …, mn) di lunghezza è Numerosi teoremi (detti di immersione e dovuti a S.L. Sobolev e ... Leggi Tutto
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – SUCCESSIONE LIMITATA – SPAZI DI → BANACH – INTERPOLAZIONE – SPAZI LP
Mostra altri risultati Nascondi altri risultati su Sobolev, spazi di (1)
Mostra Tutti

autoaggiunto

Dizionario delle Scienze Fisiche (1996)

autoaggiunto autoaggiunto [agg. Comp. di auto- e aggiunto] [ANM] Di operatore lineare che è identico al suo operatore aggiunto (anche come s.m.); il termine è sinon. di hermitiano (←) per operatori definiti [...] è se lo spazio è infinito-dimensionale; precis., dato uno spazio di Hilbert H, l'a. è un operatore lineare A per cui è (a, Ab)=(Aa, b) con a∈H, b∈H. ◆ [ALG] Elemento a., o hermitiano, di un'algebra di Banach involutiva: v. algebre di operatori: I 93 ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: SPAZIO DI HILBERT – OPERATORE LINEARE
Mostra altri risultati Nascondi altri risultati su autoaggiunto (2)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 10
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali