La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana
Alberto Conte
Ciro Ciliberto
La scuola di geometria algebrica italiana
Gli inizi: Luigi Cremona e [...] algebriche. Tra queste, la 'funzione diHilbert' dell'ideale dei polinomi che si annullano sulla curva C, ossia la dimensione hC(d), per ogni intero positivo d, dello spazio vettoriale dei polinomi omogenei di grado d che si annullano su C ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria
Umberto Bottazzini
I fondamenti della geometria
Verso la metà del XIX sec. Georg Friedrich Bernhard Riemann (1826-1866) [...] , rette e piani allo spazio in modo che tutti gli altri assiomi siano ancora soddisfatti. In una nota Hilbert osserva: "Del resto, nel corso delle presenti ricerche non ci siamo serviti in alcun luogo di questo assioma" (Hilbert 1971, p. 44); una ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] -1895) adottò lo stesso approccio nello studio dello spazio a 5 dimensioni delle coniche del piano. I geometri avevano da tempo compreso che lo spaziodi tutte le curve piane di grado n forma una varietà di dimensione (n+3)n/2 ma soltanto verso il ...
Leggi Tutto
convessità Una figura (piana o solida) è detta convessa se, dati due suoi punti qualunque, il segmento che li congiunge appartiene interamente alla figura. Più in generale questa definizione si applica [...] i sottoinsiemi di un generico spazio vettoriale reale. Casi notevoli: a) un angolo è convesso se ha ampiezza minore di 180°, della matematica (a partire dagli studi di H. Minkowski, C. Carathéodory, D. Hilbert ecc.). Funzioni convesse Una funzione f ...
Leggi Tutto
hilbertiano
〈i-〉 agg. – Relativo al matematico ted. D. Hilbert (1862-1943). In partic., spazio h., spazio vettoriale completo (in cui cioè qualsiasi successione convergente di punti converga a un punto dello spazio stesso) nel quale sia definito...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...