• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
54 risultati
Tutti i risultati [92]
Matematica [54]
Fisica [25]
Geometria [17]
Fisica matematica [17]
Analisi matematica [17]
Algebra [17]
Storia della matematica [12]
Meccanica [8]
Meccanica dei fluidi [8]
Meccanica quantistica [8]

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] E, la restrizione di μ alle funzioni di K(E) a supporto in K è una forma lineare continua. Si studiano le misure limitate, la topologia vaga sullo spazio delle misure, il supporto di una misura e le misure a supporto compatto. Queste definizioni sono ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

Misura e integrazione

Enciclopedia del Novecento (1979)

Misura e integrazione M. Evans Munroe Introduzione La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] cioè una unione numerabile di insiemi rari. (Un insieme E in uno spazio topologico X si dice ‛raro' se la chiusura Ä di E non che f=0 q. o. Teorema di Riesz-Fischer: lo spazio lineare normato Lp è completo. Questo è proprio il teorema che invano i ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEOREMA DELLA CONVERGENZA MONOTONA – FUNZIONALI LINEARI CONTINUI – CONVERGENZA INCONDIZIONATA – INTEGRAZIONE DI LEBESGUE – RELAZIONE DI EQUIVALENZA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] questo caso, si dice che f è differenziabile in x0, l'applicazione lineare u∈ℒ(ℝm;ℝn) si chiama la sua derivata (totale) in x0 e Supponiamo ora che l'insieme X sia esso stesso uno spazio topologico; possiamo allora definire in ℬ(X) il sottospazio ℬ∞(X ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

Convessità

Enciclopedia della Scienza e della Tecnica (2007)

Convessità Arrigo Cellina La convessità è un concetto della matematica elementare; le parole concavo e convesso fanno parte del linguaggio quotidiano. Eppure questo semplice concetto, unito ad altre [...] in norma allora è chiuso per la topologia debole. Quindi, nel passare dalla famiglia Funzioni convesse Una funzione a valori reali V definita su di un sottoinsieme di uno spazio lineare X viene detta convessa se per ogni x e y nel suo dominio e per ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – FUNZIONI A QUADRATO SOMMABILE – SPAZIO LOCALMENTE CONVESSO – CALCOLO DELLE VARIAZIONI – FUNZIONE DIFFERENZIABILE

operatore di proiezione

Enciclopedia della Scienza e della Tecnica (2008)

operatore di proiezione Luca Tomassini Sia ℋ uno spazio vettoriale e P un’applicazione lineare (operatore) di ℋ in sé. Se P=P2 allora P è detto operatore di proiezione. Di particolare importanza è il [...] 2P+P2=I−P, così che anche I−P è un proiettore (evidentemente ortogonale). Lo spazio lineare XI−P={x∈ℋ tali che (I−P)x=x} coincide con il complemento ortogonale di insiemi misurabili (boreliani) su uno spazio topologico X genera in un senso opportuno ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: COMPLEMENTO ORTOGONALE – APPLICAZIONE LINEARE – OPERATORI HERMITIANI – SOTTOSPAZIO LINEARE – FUNZIONI MISURABILI
Mostra altri risultati Nascondi altri risultati su operatore di proiezione (5)
Mostra Tutti

TOPOLOGIA ASTRATTA

Enciclopedia Italiana - II Appendice (1949)

TOPOLOGIA ASTRATTA S. Fac. . La topologia (meno modernamente chiamata analysis situs; v. III, p. 87) si occupa delle proprietà invarianti degli insiemi di punti nelle trasformazioni bicontinue (omeomorfismi), [...] importanza il teorema di Brouwer della invarianza della dimensione nelle trasformazioni topologiche; non esiste cioè nello spazio lineare a n dimensioni nessun insieme che sia immagine topologica di un simplesso di dimensione > n. Nella ... Leggi Tutto

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana Alberto Conte Ciro Ciliberto La scuola di geometria algebrica italiana Gli inizi: Luigi Cremona e [...] varietà che rappresenta gli spazi subordinati di data dimensione, immersi in uno spazio lineare (1915), in cui una prima fusione fra le vedute algebrico-geometriche e quelle topologico-trascendenti, ossia due fra gli apporti più caratteristici del ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

vettoriale

Dizionario delle Scienze Fisiche (1996)

vettoriale vettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] parlare in uno spazio v., di combinazione lineare di più elementi klvl+ ...+krvr nonché, di dipendenza e indipendenza lineare (vl, [ALG] Spazio v. tangente: v. varietà differenziabili infinito-dimensionali: VI 493 f. ◆ [ALG] Spazio v. topologico: v. ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA

applicazióne

Dizionario delle Scienze Fisiche (1996)

applicazione applicazióne [Der. del lat. applicatio -onis "atto ed effetto dell'applicare", dal part. pass. applicatus di applicare: (→ applicabile)] [ALG] Si dice che f è un'a. di un insieme P in un [...] M e N e a valori in un terzo spazio lineare L, che sia lineare sia rispetto ad a∈M che a b∈N. ◆ [ALG] A. completamente positiva: v. algebre di operatori: I 96 a. ◆ [ALG] A. continua: a. di uno spazio topologico A in un altro A' che fa corrispondere a ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – ELETTRONICA – MECCANICA APPLICATA

funzionale

Dizionario delle Scienze Fisiche (1996)

funzionale funzionale [agg. e s.m. Der. di funzione] [agg.] [ANM] Analisi, o calcolo, f.: teoria che generalizza agli spazi di funzioni i metodi e i risultati del-l'analisi matematica classica: v. funzionale, [...] spazio f. topologico) o addirittura di distanza (spazio f. metrico). ◆ [ANM] Trasformazione f.: trasformazione tra spazi IV 599 a. ◆ [ALG] F. lineare: è un'applicazione f:V→K, dove K è un campo e V uno spazio vettoriale su K, tale che per ogni scelta ... Leggi Tutto
CATEGORIA: BIOFISICA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
1 2 3 4 5 6
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
simplèsso
simplesso simplèsso s. m. [adattam. dell’ingl. simplex, sost. sviluppatosi dall’agg. simplex «semplice», che è dal lat. simplex -plĭcis come l’ital. semplice]. – In matematica, generalizzazione dei concetti di segmento, triangolo, tetraedro:...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali