operatori lineari
Luca Tomassini
Un’applicazione A:E→F di uno spazio lineare E in uno spazio lineare F (anche coincidente con E) su un campo K (che qui identificheremo con i numeri complessi ℂ) tale [...] di Banach costituisce un esempio di algebra di Banach (non commutativa). Se A manda lo spaziovettoriale n-dimensionale complesso ℂn con base (e1,...,en) nello spazio m-dimensionale ℂm con base (f1,...,fm) esistono numeri complessi ai,j (i=1,...,m ...
Leggi Tutto
composizione
composizióne [Der. del lat. compositio -onis, "atto, operazione del comporre, e anche il modo, gli elementi di essa e il suo risultato", dal part. pass. compositus di componere (→ composito)] [...] vettori. ◆ [ALG] C. esterna e interna: v. oltre: Legge di composizione. ◆ [ALG] C. vettoriale: (a) la somma componente per componente di due elementi di uno spaziovettoriale; (b) in partic., lo stesso che c. di vettori (v. sopra). ◆ [ALG] Legge di ...
Leggi Tutto
algebra non commutativa
Luca Tomassini
Sia F un campo, ovvero un corpo commutativo. Un insieme A è detto F-algebra (o algebra su F) se è uno spaziovettoriale sul campo F (per es., i campi ℚ, ℝ, ℂ dei [...] algebra con unità su un determinato campo F allora essa è isomorfa a una sottoalgebra di L(V′) per un qualche spaziovettoriale V′ sul campo F. Sottolineiamo che la dimensione di V′ non è necessariamente finita e coincide con quella dell’algebra A ...
Leggi Tutto
modulo
Luca Tomassini
Gruppo abeliano (in cui l’operazione di moltiplicazione è commutativa) unito a un anello di operatori. Un modulo è la generalizzazione di uno spaziovettoriale (lineare) su un [...] per a negativo. Come precedentemente accennato, se A è un campo la nozione di modulo coincide con quella di spaziovettoriale. Anche uno spaziovettoriale V su un campo K (fissata una base) può essere considerato un modulo sull’anello Mν(K) di tutte ...
Leggi Tutto
traccia
Luca Tomassini
Nel caso di un operatore lineare (matrice quadrata) di uno spaziovettoriale euclideo n-dimensionale in sé A=∣∣aij∣∣ (con aij numeri complessi e i,j=1,...,n), la traccia di A [...] A=A*), trA è uguale alla somma dei suoi autovalori. La generalizzazione del concetto di traccia al caso di spazivettoriali di dimensione infinita dotati di prodotto scalare (di Hilbert) ℋ si è dimostrata uno strumento fondamentale nello studio delle ...
Leggi Tutto
dimensione
dimensióne [Der. del lat. dimensio -onis "misura", dal part. pass. dimensus di dimetiri "misurare"] [MCQ] D. anomala: una d. operatoriale diversa da quella canonica di una data teoria. ◆ [MCC] [...] gruppo: v. gruppi classici: III 112 c. ◆ [ALG] D. di uno spaziovettoriale: il massimo numero di vettori linearmente indipendenti in quello spazio; così, una linea, una superficie e lo spazio ordinario hanno d., rispettiv., 1, 2, e 3. Questa nozione ...
Leggi Tutto
Banach Stefan
Banach 〈bànak〉 Stefan [STF] (Cracovia 1892 - Leopoli 1945) Prof. (1924) nell'univ. di Leopoli. ◆ [ALG] Algebra di B. (propr., algebra commutativa di B.): è un'algebra nella quale si sia [...] ◆ [ALG] Rappresentazione fedele, o riducibile, di un'algebra di B.: v. algebre di operatori: I 94 a. ◆ [ALG] Spazio di B.: spaziovettoriale che gode delle proprietà di essere normato e completo, cioè tale che ogni successione di Cauchy converge a un ...
Leggi Tutto
autospazio
autospàzio [Comp. di auto- e spazio] [ALG] Di un operatore lineare A definito su uno spaziovettoriale X, è un sottospazio A⊂X tale che se x∈A, allora Ax∈A; si usa anche dire, se λ è un autovalore [...] di A, che i vettori verificanti Ax=λx appartengono all'a. generato dall'autovalore λ. ◆ [MCC] A. instabile, neutro e stabile: v. sistemi dinamici: V 288 f ...
Leggi Tutto
reticolo
retìcolo [Der. del lat. reticulum o reticulus, dim. di rete] [LSF] Sinon. di rete e di reticolato, usato in alcune espressioni tecniche per indicare una struttura che abbia aspetto di rete bi- [...] , rispettiv., il minimo comune multiplo (o anche viceversa); (b) nella geometria, i sottospazi di uno spaziovettoriale (incluso l'insieme vuoto e l'intero spazio) costituiscono un r. quando s'intendono come intersezione e unione di due sottospazi lo ...
Leggi Tutto
potenza
potènza [Der. del lat. potentia, dall'agg. potens -entis "potente", part. pres. di posse "potere"] [LSF] (a) Generic., capacità di produrre grandi effetti. (b) Specific., l'energia che viene [...] megaton). ◆ [ALG] P. esterna di un fibrato: v. fibrato: II 571 a. ◆ [ALG] P. esterna di uno spaziovettoriale: in un'algebra di Grassmann definita su uno spaziovettoriale V, la r-esima p. di V è il sottospazio dell'algebra generato dal prodotto di r ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
vettoriale
agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...