In geometria prende il nome di asintoto di una curva avente un ramo che va all'infinito, la retta limite (se esiste) della tangente a un punto del ramo di curva quando questo punto, muovendosi sulla curva, [...] ; se la tangente è di flesso, la curva non l'attraversa.
4. Linee asintotiche di una superficie sono quelle curve la cui di x all'infinito tende a
Formule approssimate di ϕ (x) si debbono pure al Čebyšev (Tchebischeff); e formule esatte al Riemann ...
Leggi Tutto
Matematico, nato il 20 settembre 1842 a Darmstadt. Ha insegnato successivamente nelle scuole tecniche superiori di Darmstadt e Monaco e, dal 1884 al 1918, all'università di Tubinga.
Il B., nella sua opera, [...] Clebsch, al Riemann, e va annoverato fra i promotori e i primi cultori della geometria sulle curve e sulle superficie algebriche. considerazione delle funzioni algebriche quella delle serie lineari di gruppi di punti sopra la curva (v. curve). Su ...
Leggi Tutto
CASTELNUOVO, Guido
Eugenio Togliatti
Nacque a Venezia il 14 ag. 1865 da Enrico ed Emma Levi. Il padre fu apprezzato autore di romanzi e novelle.
Allievo del liceo Foscarini di Venezia, ove ebbe come [...] e trascendenti di B . Riemann, A. Clebsch, A. Brill, M. Noether, sulle serie lineari di gruppi di punti su una si rivolsero a ricerche sul comportamento d'una superficie algebrica di fronte alle trasformazioni birazionali, studio già iniziato molti ...
Leggi Tutto
Filosofia
Eugenio Garin
di Eugenio Garin
Filosofia
sommario: 1. Considerazioni preliminari. 2. Filosofia speculativa e filosofia scientifica. 3. Limiti e contraddizioni della filosofia scientifica. [...] sforzi volti a obliterare le divergenze, quasi fossero disuperficie o irrilevanti. Nè, del resto, sembrano avere E ha invocato una struttura temporale ‛elastica' analoga allo spazio di B. Riemann (‟simile a un liquido [...], a una posizione e a ...
Leggi Tutto
L'Ottocento: matematica. Meccanica analitica
Helmut Pulte
Meccanica analitica
La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] punto materiale è vincolato a muoversi non sopra ma fuori di una superficie sferica. In questo caso la [5] deve essere di Hamilton e di quello di minima azione nell'elettrodinamica (comprendente potenziali dipendenti dal tempo) dovute a Riemann ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Filosofia (2012)
Federigo Enriques
Gaspare Polizzi
Nella figura di Enriques si intrecciano matematica, filosofia, storia, pedagogia e organizzazione della cultura. Il matematico livornese unisce le sue competenze scientifiche [...] classificazione delle superfici nelle Ricerche di geometria sulle superficie algebriche (1893), scritto di base per la fondazione i ricordati Poincaré e Helmholtz, ma anche con Bernhard Riemann, Ernst Mach, Pierre-Maurice Duhem, Ludwig Boltzmann ed ...
Leggi Tutto
L'Ottocento: matematica. Calcolo geometrico
Paolo Freguglia
Gert Schubring
Calcolo geometrico
Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] non una superficie). Tuttavia queste tendenze furono sviluppate solamente nella prima metà dell'Ottocento, a opera soprattutto di William R generare sistemi di ordine comunque elevato.
Per questi sistemi n-dimensionali, che seguendo Riemann saranno in ...
Leggi Tutto
MASCHERONI, Lorenzo
Luigi Pepe
– Primo di quattro figli, nacque a Castagneta, frazione di Bergamo, il 13 maggio 1750 da Giovanni Paolo e da Maria Ceribelli.
Il padre, discendente da una modesta famiglia [...] servono a delineare le ore ineguali degli antichi sulle superficie piane, originata da un’osservazione dell’abate bergamasco di γ rimane il più importante problema aperto in questo tipo di studi, legati tra l’altro alla celebre ipotesi di B. Riemann. ...
Leggi Tutto
BURALI FORTI, Cesare
Evandro Agazzi
Nacque ad Arezzo il 13 ag. 1861 da Cosimo e da Isoletta Guiducci. Dopo aver compiuto gli studi medi nel collegio militare di Firenze, s'iscrisse nel dicembre 1879 [...] come B. Riemann, K. Weierstrass, P. Du Boys-Reymond, R. Dedekind, G. Cantor. All'altezza di costoro si collocava per la geometria differenziale su di una superficie col metodo vettoriale generale, in Rend. d. Circ. mat. di Palermo, XXXIII(1912), pp. ...
Leggi Tutto
integrale
integrale termine, introdotto da Jakob Bernoulli nel 1695, usato per indicare una delle nozioni fondamentali dell’analisi matematica, collegata sia al problema della determinazione dell’area [...] mediante la scomposizione della superficie (o del solido) in un numero infinitamente grande di elementi, ciascuno dei Dirichlet, B. Riemann, G. Peano, G. Jordan, T.J. Stieltjes. Infine, una più generale definizione di integrale, direttamente connessa ...
Leggi Tutto
riemanniano
〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...