• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
agenda
atlante
il chiasmo
lingua italiana
360 risultati
Tutti i risultati [11583]
Biografie [1917]
Arti visive [1455]
Storia [1157]
Geografia [585]
Archeologia [968]
Diritto [766]
Medicina [689]
Temi generali [657]
Economia [629]
Biologia [486]

Scienza indiana: periodo classico. Matematica

Storia della Scienza (2001)

Scienza indiana: periodo classico. Matematica Takao Hayashi Matematica 'Gaṇita' ('matematica') Prima dell'introduzione e diffusione dell'astrologia oroscopica e dell'astronomia matematica nella società [...] nome è ricordato se non altro per la scoperta di uno sviluppo in serie di potenze di π e forse anche per quella delle principali funzioni trigonometriche. I versi che riguardano queste serie non figurano nei testi astronomici di Mādhava che ci sono ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] è infinitamente differenziabile, perché lo sono la parte reale e la parte immaginaria. Riemann considerò quindi la teoria dello sviluppo in serie di Laurent nell'intorno di un polo di ordine finito e la teoria dei punti di diramazione. Nella seconda ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] tacitamente che i fosse abbastanza piccolo) Lagrange mostrava che i coefficienti della [1], cioè le funzioni 'derivate' p,q,r,… erano proprio i coefficienti dello sviluppo in serie di Taylor di f(x), p=f′(x), q=f″(x)/2, r=f‴(x)/2∙3,… e così via. Lo ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: astronomia. Il problema dei tre corpi e la stabilità del Sistema solare

Storia della Scienza (2003)

L'Ottocento: astronomia. Il problema dei tre corpi e la stabilita del Sistema solare June Barrow-Green Il problema dei tre corpi e la stabilità del Sistema solare Questo capitolo illustra, a grandi [...] di Gyldén e avevano la seguente espressione generale: dove α è molto piccolo e Φ(x,t) è una funzione sviluppata in serie di potenze di x, aventi per coefficienti funzioni periodiche di t. Il metodo, soggetto ad alcune limitazioni sulla simmetria ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Lo sviluppo della teoria della probabilità e della statistica

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Lo sviluppo della teoria della probabilita e della statistica Oscar Sheynin Lo sviluppo della teoria della probabilità e della statistica I primi sviluppi del calcolo delle [...] Nel ricavare la sua espressione, de Moivre usò ampiamente lo sviluppo in serie di potenze di funzioni (trovando talvolta serie divergenti di cui calcolava la somma di parecchi termini). In questo modo la distribuzione normale fece la sua comparsa. De ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA – STORIA DELLA MATEMATICA

Solitoni

Enciclopedia del Novecento (1989)

Solitoni Francesco Calogero SOMMARIO: 1. Introduzione: cenno storico.  2. Soluzione di equazioni lineari di evoluzione mediante la trasformata di Fourier.  3. L'equazione di Korteweg-de Vries.  4. La [...] una tecnica di soluzione, che estende ad alcune classi di equazioni ‛non lineari' una metodologia analoga a quella fornita dallo sviluppo in serie e integrale di Fourier per equazioni ‛lineari'. Nel giro di qualche anno si è visto che tale tecnica è ... Leggi Tutto
TAGS: INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS – EQUAZIONE ALLE DERIVATE PARZIALI – TEORIA QUANTISTICA DEI CAMPI – SPAZIO DELLE CONFIGURAZIONI – EQUAZIONE DI SCHRÒDINGER
Mostra altri risultati Nascondi altri risultati su Solitoni (4)
Mostra Tutti

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] 1 non può essere ulteriormente esplicitato; però, per ∣λ∣ > r (A), vale lo sviluppo in serie Formula per il ‛risolvente' (la cosiddetta ‛serie di Neumann'). Allorché gli operatori su Cn vengono identificati da matrici, queste possono essere viste ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] la formula è più complicata. Il calcolo è più semplice se ci si limita al caso in cui le singolarità di C siano 'nodi'. Un nodo è un punto p=(a,b)∈C in cui lo sviluppo in serie di Taylor del polinomio P che definisce C è della forma [9] P(z,w)=α ... Leggi Tutto
CATEGORIA: GEOMETRIA

L'Età dei Lumi: matematica. I metodi numerici

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. I metodi numerici Peter Schreiber I metodi numerici Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] il metodo generale per determinare da uno sviluppo in serie di potenze di una funzione lo sviluppo della funzione inversa. Nel 1715 Brook Taylor (1685-1731) unificò i numerosi sviluppi in serie per funzioni elementari fino ad allora conosciuti ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. La teoria dei numeri

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La teoria dei numeri Günther Frei La teoria dei numeri La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] lo stesso vale per altre funzioni trascendenti, come log(1+x) e arctanx, e che ciò si verifica anche in casi in cui lo sviluppo in serie di potenze della funzione non converge. Nel 1768 Lagrange dimostrò infine l'inverso del teorema 6.1 di Euler, e ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 36
Vocabolario
sviluppo
sviluppo s. m. [der. di sviluppare (deverbale a suffisso zero)]. – 1. a. L’azione di sviluppare, il fatto di svilupparsi e di essere sviluppato; il procedimento e il modo con cui si attua; aumento, accrescimento o incremento: lo s. di un centro...
sèrie
serie sèrie s. f. [dal lat. series, der. di serĕre «intrecciare, infilare»]. – 1. Successione ordinata e continua di elementi, concreti o astratti, dello stesso genere: è il quarto nella s. dei papi, degli imperatori romani; la s. dei numeri...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali