Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] vi sono altri operatori che provengono da opportune contrazioni dei tensori. È comunque possibile utilizzare la teoria varietà di moduli di curve, superfici, fibrati vettoriali.
Il teoremadelle slice étale di Domingo Luna (1972) permette di studiare ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] stesso macchinario di cui si dispone nel caso delle varietà lisce, e cioè esistenza della classe canonica, dell'indice di intersezione di curve con divisori, ecc. e validità dei principali teoremi sulle contrazioni, in modo che non sorgano i problemi ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] C, cioè una regione che si può ridurre a un punto per contrazioni continue di C, la formula di Gauss-Bonnet esprime ‛l'integrale le funzioni di variabile complessa. La recente dimostrazione del teoremadell'indice di Atiyah-Singer citata nel cap. 5 ha ...
Leggi Tutto
impulso2
impulso2 s. m. [dal lat. impulsus -us, der. di impellĕre «spingere innanzi», part. pass. impulsus]. – 1. Spinta comunicata a un corpo; in partic., in meccanica, i. elementare di una forza, il prodotto della forza agente su un punto...