Anatomia
N. del seno (o n. seno-atriale) Formazione anatomica situata nell’atrio destro del cuore, in corrispondenza dello sbocco della vena cava superiore, importante nella regolazione del ritmo cardiaco.
Astronomia
Per [...] del comportamento della curva in un intorno del n. stesso: n. ordinario (fig. 1): ciascuna delletangenti principali ha alla base di una teoria combinatoria dei n. è il teorema di Reidemeister, secondo cui due diagrammi rappresentano lo stesso tipo ...
Leggi Tutto
Astronomia
C. di altezza
In astronomia nautica, circonferenza (c in fig. 1) tracciata sulla sfera terrestre, avente per centro la proiezione su quest’ultima, dal suo centro, di un astro A, e per raggio [...] delle corde
Corde uguali sottendono archi uguali; ogni corda è dimezzata dal diametro a essa perpendicolare (teorema al c. (o alla circonferenza contorno).
Proprietà delletangenti
Una tangente è perpendicolare al raggio passante per il punto di ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] +Σnj=1 ξjωij)ei+ΣNλ=n+1 (Σnj=1ξjωjλ)eλ non è più tangente ad M e la sua componente tangenziale è il differenziale covariante ∇X di X funzioni di variabile complessa. La recente dimostrazione del teoremadell'indice di Atiyah-Singer citata nel cap. 5 ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Algebra, geometria, indivisibili
Enrico Giusti
Primi progressi nell’algebra
Dopo un periodo di gestazione lungo tre secoli, l’algebra è la prima disciplina in cui nel Cinquecento si registrano sostanziali [...] indivisibili a spessore variabile nell’affrontare il problema delletangenti alle curve di equazione yk=xm. Per Torricelli , 1577-1643) e basato su quello che oggi è noto come teorema di Pappo-Guldino.
Il punto su cui si concentrano tutte le critiche ...
Leggi Tutto
In geometria, superficie costituita da una semplice infinità di rette, dette generatrici; ogni linea tracciata sopra la r. e che intersechi la generatrice generica in un sol punto si dice direttrice della [...] teorema di Chasles, secondo il quale il fascio dei piani passanti per una generatrice è proiettivo alla punteggiata (la generatrice stessa) costituita dai punti in cui tali piani sono tangenti si ottengono come luogo delletangenti a una curva sghemba ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] a n dimensioni, come i fibrati tangenti e cotangenti a una varietà differenziabile uno s. topologico. Vale anzi il teorema: ogni s. metrico è uno s. con (v1, v2) (oppure con v1∙v2) e gode delle seguenti proprietà: (v1, v2)=(v2, v1); (k1v1+k2v2, ...
Leggi Tutto
Curva che si ottiene segando un cono circolare (retto od obliquo) con un piano. Il cono va pensato come luogo di rette, e non di semirette, uscenti dal vertice V, cioè costituito, come si usa dire nel [...] non prospettivi e non sovrapposti ( teorema di Steiner).
Dal punto di vista della geometria affine le c. non degeneri non appartengono alla c., anzi sono interni a essa: le rette tangenti alla c. passanti per un fuoco sono rette isotrope. Un’ellisse ...
Leggi Tutto
Lo stato generico di un ente geometrico o fisico di scostarsi da un andamento rettilineo o piano.
C. di una curva piana
Elemento definito punto per punto della curva, che misura la rapidità con la quale [...] dal piano tangente a essa in un suo punto P dà luogo a considerazioni più delicate. Ci limiteremo a riassumere alcuni risultati fondamentali. Si dimostra (teorema di Meusnier) che è sufficiente limitarsi alla considerazione delle sezioni normali ...
Leggi Tutto
In geometria, varietà algebrica del quarto ordine; in particolare, q. razionale normale è la curva dello spazio a 4 dimensioni di equazioni x1=t, x2=t2, x3=t3, x4=t4.
Le q. si distinguono in q. piane [...] x, y; un esempio è la lemniscata di Bernoulli. Il classico teorema di Steiner per le coniche si generalizza alle q. (e anzi le quadriche Q, Q′ sono tangenti in un punto) diviene una curva razionale.
Dal punto di vista dell’andamento, le q. di prima ...
Leggi Tutto
seno2
séno2 s. m. [dal lat. mediev. sinus, calco dell’arabo giaib «seno1» e «seno2», che è un adattam., con interpretazione semantica erronea, del sanscr. jīva- «corda»]. – In matematica, una delle funzioni trigonometriche (o circolari) fondamentali...