L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] la conica in sé. La geometria affine piana si ottiene eliminando una retta dal piano proiettivo e considerando soltanto le trasformazioniproiettive che trasformano quella retta in sé. La geometria euclidea è associata con una conica degenere.
Una ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] fonte di discussioni). Il gruppo delle isometrie euclidee è un sottogruppo del gruppo delle trasformazioniproiettive, e lo spazio proiettivo un sottospazio dello spazio euclideo. Klein attribuiva molta importanza a questa gerarchia delle geometrie ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. Lo sviluppo della matematica di Apollonio: Desargues, Pascal¿
Paolo Freguglia
Lo sviluppo della matematica di Apollonio: Desargues, Pascal e le [...] delle nozioni primitive euclidee ed era considerata in sostanza la nozione di trasformazioneproiettiva; era inoltre messa in luce l'invarianza per tali trasformazioni di relazioni tra punti, come nel caso dell'involuzione, nozione introdotta ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] le concomitanti loro modificazioni (riduzione del numero delle dita, trasformazione dei denti per il nuovo tipo di cibo, aumento l'altro, un teorema generale sull'esistenza di limiti proiettivi di misure di probabilità e un celebre criterio di ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Le tradizioni sulle coniche...
Roshdi Rashed
Philippe Abgrall
Le tradizioni sulle coniche e l'inizio delle ricerche sulle proiezioni
A [...] che il piano (Q) passi o no per il centro D del cerchio da proiettare.
Nel primo caso, il piano (Q) passa per il centro D del l'immagine di (Γ) nella proiezione conica di polo A, è la trasformata di (Γ) nell'omotetia h di centro A tale che (Q)=h ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] superficie con 2p tagli per poterla distendere sul piano e trasformarla in una superficie semplicemente connessa T′.
Le più semplici le idee di Riemann nel linguaggio della geometria proiettiva delle curve algebriche e di ritornare all'analisi ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] dei prodotti [Xi,Xi′] genera un ideale.
Lie trovò anche numerosi esempi espliciti, quali: il gruppo delle trasformazioni dello spazio proiettivo n-dimensionale, i gruppi di matrici e i gruppi che preservano alcune semplici forme differenziali. In ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] degli invarianti rispetto al gruppo di trasformazioni 'aggiunto', come dice Klein, alla varietà e ai suoi sottogruppi e nella conseguente classificazione delle corrispondenti geometrie e sottogeometrie (proiettiva, affine, euclidea e non euclidea e ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Dalla prospettiva dei pittori alla prospettiva dei matematici
Pietro Roccasecca
Il progressivo abbandono nei dipinti su tavola dei fondi oro in favore di paesaggi e vedute urbane, l’attenzione al naturale [...] essere stata senza conseguenze per la trasformazione della rappresentazione pittorica in senso naturalistico della seconda regola è cruciale per lo sviluppo della teoria proiettiva, poiché introduce il concetto di concorrenza delle parallele in ...
Leggi Tutto
proiettivo
agg. [der. del lat. proiectus: v. proietto]. – 1. Genericam., che proietta, che ha forza di proiettare, che ha rapporto con una proiezione. In matematica, relativo all’operazione di proiezione (e anche a quella di sezione) e alle...
punto2
punto2 s. m. [lat. pŭnctum, lat. tardo pŭnctus, der. di pŭngĕre «pungere»: propr. «puntura, forellino»]. – 1. a. Nel cucito e nel ricamo, l’atto del passare il filo attraverso la stoffa e ripassarlo a breve distanza, e il risultato...