La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] analoghi di tipo topologico per mezzo dei quali classificare le varietà a meno di omeomorfismi. Il comportamento degli integrali di forme differenziali definite su una data varietà V gli suggerì la definizione di una relazione tra le sottovarietà ...
Leggi Tutto
L'Ottocento: matematica. La geometria non euclidea
Rossana Tazzioli
La geometria non euclidea
Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] una tappa fondamentale nello sviluppo della geometria differenziale. Egli considerava le superfici da un nuovo altri punti irregolari (in linguaggio matematico liscio) è una varietà se nell'intorno di ogni suo punto si possono introdurre ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il calcolo geometrico
Paolo Freguglia
Gert Schubring
Il calcolo geometrico
Quando pubblicò il trattato Die lineale Ausdehnungslehre (La teoria [...] per esempio, con gli sviluppi della teoria delle varietà che si riallacciava a Riemann. Ecco perché Felix calcolo vettoriale e tensoriale divenne strumento irrinunciabile della geometria differenziale, e i lavori di Wilhelm Blaschke (1885-1962 ...
Leggi Tutto
metrica riemanniana
Luca Tomassini
Un tensore g di rango 2 definito su una varietà differenziabile n-dimensionale che sia covariante, simmetrico e definito positivo. In ogni spazio tangente TπMν nel [...] semiriemanniana. L’esistenza di una metrica riemanniana su una varietà Mν permette di definire una lunghezza l di una curva di lunghezza sufficientemente piccola sono curve di lunghezza minima.
→ Geometria differenziale; Variazioni, calcolo delle ...
Leggi Tutto
teorema di Gauss-Bonnet
Luca Tomassini
Importante teorema della geometria differenziale, secondo il quale la caratteristica di Euler χ di una varietà compatta bidimensionale M è legata all’integrale [...] R non è regolare) della stessa ∂R. Nel caso di varietà riemanniane bidimensionali non compatte senza bordo N2, è valido un analogo -Bonnet ammette infine una generalizzazione al caso di varietà riemanniane regolari e compatte di dimensione pari 2d, ...
Leggi Tutto
tensore di Ricci
Gilberto Bini
Sia M una varietà dotata di una metrica riemanniana. Indichiamo rispettivamente con gij e con Rijkl le espressioni locali della metrica riemanniana e delle componenti [...] una varietà riemanniana differisca dalla geometria dello spazio euclideo ordinario. Infatti, su una varietà si esprime in termini della forma di volume euclideo a meno di termini che coinvolgono il tensore di Ricci.
→ Geometria differenziale ...
Leggi Tutto
simboli di Christoffel
Gilberto Bini
Sia M una varietà dotata di una metrica riemanniana. Ricordiamo che essa si può esprimere localmente nella forma
dove (gik) è una matrice n×n hermitiana definita [...] di Levi-Civita, un operatore molto importante che fornisce un metodo per valutare la velocità con cui i vettori e i tensori variano sulla varietà. In simboli, l’operatore ∇ dato da
prende il nome di connessione di Levi-Civita.
→ Geometria ...
Leggi Tutto
In matematica, nella topologia differenziale, teoria del c. (ideata da R. Thom attorno al 1954): se si considera la totalità delle varietà differenziabili compatte, prive di frontiera e aventi una stessa [...] teorema di Thom) che essi sono isomorfi a certi gruppi di omotopia; per quanto riguarda poi i gruppi di c. che attengono alle varietà orientate, se la dimensione n non è multipla di 4, il gruppo è finito, se invece n=4k il gruppo ha tanti generatori ...
Leggi Tutto
In topologia, nozione, introdotta da C. Ehresmann e G. Reeb verso il 1950, che generalizza quella di spazio fibrato e che ha originato un ramo della topologia differenziale oggetto di ricerche e studi [...] approfonditi. Sia Vn una varietà differenziabile di dimensione n e sia data un’applicazione differenziabile f: Vn→Wn-p che sia di rango massimo in ogni punto di Vn (cioè la matrice jacobiana delle funzioni che esprimono la f. mediante coordinate ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana
Alberto Conte
Ciro Ciliberto
La scuola di geometria algebrica italiana
Gli inizi: Luigi Cremona e [...] così una nuova branca della geometria algebrica detta 'geometria proiettivo-differenziale'. I risultati più rilevanti in questo campo riguardano lo studio di varietà notevoli (grassmanniane, varietà di Veronese, varietà di Segre e così via) e di loro ...
Leggi Tutto
connessione
connessióne s. f. [dal lat. connexio -onis, der. di connexus, part. pass. di connectĕre «connettere»]. – 1. L’essere connesso, intima unione fra due o più cose; per lo più fig., legame di stretta relazione e interdipendenza tra...
differenziare
v. tr. [der. di differenza] (io differènzio, ecc.). – 1. a. Rendere differente, costituire elemento che permette di distinguere tra persone o cose: l’uso della ragione differenzia l’uomo dagli animali; meno com., stabilire quali...