• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
80 risultati
Tutti i risultati [80]
Matematica [58]
Fisica [31]
Fisica matematica [24]
Geometria [18]
Algebra [22]
Analisi matematica [14]
Relativita e gravitazione [14]
Biografie [11]
Temi generali [11]
Meccanica [11]

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] Riemann, ben compreso soltanto per le superfici, alle varietà n-dimensionali. Un'idea della complessità che ciò comporta era in contrasto con la concezione della geometria differenziale riemanniana, che sembrava offrire un'infinità di geometrie, e ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] è sempre isospettrale: Quando prendiamo A=C∞(M) per una varietà M e poniamo: dove C è una corrente di de ) dove a(x) è una 1-densità indipendente dalla scelta della distanza riemanniana ∣x−y∣. Allora, a meno di normalizzazione, si ha Il membro ... Leggi Tutto
CATEGORIA: GEOMETRIA

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] e comunque di grande rilevanza geometrica è quello in cui la varietà V si riduce a un punto. In questo caso il dato come un modo di discretizzare il dato di una metrica riemanniana su C (e dunque di una struttura complessa) concentrandone ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] una connessione affine compatibile con la metrica riemanniana della superficie. La nozione di connessione affine a ogni punto di B. Vi è quindi lo spazio totale, una varietà E, che è l'insieme di tutte le possibili combinazioni delle posizioni e ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

Matematica: problemi aperti

Enciclopedia della Scienza e della Tecnica (2007)

Matematica: problemi aperti Claudio Procesi Prima di parlare dei problemi aperti nella matematica è bene riflettere su quelli che ne hanno segnato la storia passata. Sono infatti proprio questi che [...] spazi non isotropi e quindi le variazioni della geometria locale. Qui la nozione moderna è quella di varietà differenziabile riemanniana. Si tratta di uno spazio che localmente ammette una descrizione in termini di coordinate come nella geometria ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – CONGETTURA DI BIRCH E SWINNERTON-DYER – INTERNATIONAL MATHEMATICAL UNION – METODO DI ELIMINAZIONE DI GAUSS – FUNZIONE DI VARIABILE COMPLESSA
Mostra altri risultati Nascondi altri risultati su Matematica: problemi aperti (14)
Mostra Tutti

L'Ottocento: fisica. La matematizzazione del colore

Storia della Scienza (2003)

L'Ottocento: fisica. La matematizzazione del colore Steven R. Turner La matematizzazione del colore I colori e il loro mescolamento da Newton a Helmholtz Il moderno approccio allo studio della visione [...] condizioni studiando i soggetti dicromatici. Se le varietà del dicromatismo erano forme di riduzione della visione linea in uno spazio cromatico tridimensionale, dotato di una metrica riemanniana data da: dE2=dE21+dE22+dE23. Grazie alla formula degli ... Leggi Tutto
CATEGORIA: OTTICA – STORIA DELLA FISICA

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento Jeremy Gray Problemi di analisi complessa alla fine dell'Ottocento La teoria generale [...] ogni nuova edizione. Autori successivi nel solco della tradizione riemanniana sono Axel Harnack (1851-1888) e Rudolf Otto Sigismund quello di Weierstrass da cui partivano per trattare una varietà di argomenti più avanzati. Si lasciò a Giulio Vivanti ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

meccanica

Dizionario delle Scienze Fisiche (1996)

meccanica meccànica [Der. del lat. mechanica, dal gr. mechaniké (téchne) "(arte) delle macchine"] [MCC] Nella suddivisione tradizionale della fisica, la scienza che studia le leggi del moto dei corpi, [...] delle configurazioni può assumere la struttura delle varietà differenziabili: v. meccanica analitica. ◆ [MCC relativa dei sistemi: v. meccanica relativa: III 722 b. ◆ [MCC] M. riemanniana: v. meccanica analitica: III 658 a. ◆ [MCC] M. rigida: lo ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su meccanica (4)
Mostra Tutti

CACCIOPPOLI, Renato

Dizionario Biografico degli Italiani (1973)

CACCIOPPOLI, Renato Alessandro Figà Talamanca Nacque a Napoli il 20 genn. 1904. Suo padre, Giuseppe, era un noto chirurgo napoletano, sua madre, Sofia, era figlia del celebre rivoluzionario russo Michail [...] ), pp. 3-11 e 137-146, e Misura e integrazione sulle varietà parametriche, note I, II e III, ibid., pp. 219-227, , e Funzioni pseudo-analitiche e rappresentazioni pseudo-conformi delle superfici riemanniane, in Ricerche di mat., II(1953), pp. 104-127 ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE – CALCOLO DELLE VARIAZIONI – TEORIA DELL'INTEGRAZIONE – INTEGRALE DI STIELTJES – ACCADEMIA DEI LINCEI
Mostra altri risultati Nascondi altri risultati su CACCIOPPOLI, Renato (4)
Mostra Tutti

BOMPIANI, Enrico

Dizionario Biografico degli Italiani (1988)

BOMPIANI, Enrico Giorgio Israel Nacque il 12 febbr. 1889 a Roma da Arturo e da Domenica Gaifani. Abbandonando la tradizione di studi in medicina della famiglia (il padre e due fratelli erano illustri [...] in uno spazio di Riemann e l'introduzione di nuovi invarianti per la geometria riemanniana (Spazi riemanniani, luoghi di varietà totalmente geodetiche, ibid., XXXII [1923], pp. 14-15). Va infine menzionato l'interesse che il B. ebbe sempre, in ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ISTITUTO NAZIONALE DI ALTA MATEMATICA – CONSIGLIO NAZIONALE DELLE RICERCHE – ACCADEMIA DELLE SCIENZE DI TORINO – EQUAZIONI DIFFERENZIALI ORDINARIE – INTERNATIONAL MATHEMATICAL UNION
Mostra altri risultati Nascondi altri risultati su BOMPIANI, Enrico (2)
Mostra Tutti
1 2 3 4 5 6 7 8
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali