stima asintotica
Luca Tomassini
Due funzioni f(x) e g(x) sulla retta reale ℝ sono dette asintoticamente uguali per x→x0 se in qualche intorno del punto x0 (con l’eccezione di x0 stesso) si ha f(x)=ε(x)g(x) [...] due funzioni sono asintoticamente uguali (nel punto x0) se l’errore relativo compiuto approssimando l’una con l’altra (nel punto x0) tende a zero per x→x0. Per questa ragione una funzione g si dice stima asintotica di una funzione f nel punto x0 se è ...
Leggi Tutto
Matematica
Lo studio delle proprietà geometriche delle figure che non dipendono dalla nozione di misura, ma sono legate a problemi di deformazione delle figure stesse.
Proprietà topologiche
La t., che [...] uno dato. Per es., si ha che il gruppo H1(S) relativo a una sfera S è costituito dal solo elemento zero: ogni ciclo sulla sfera è omologo a zero; invece sul toro il gruppo H1(S) è un gruppo abeliano libero con due generatori, z1 e z2, che si possono ...
Leggi Tutto
Matematica
In matematica, e nelle sue applicazioni, grandezza, dimensionata o adimensionata, costante o dipendente da qualche variabile, che, operando su una certa quantità A (per es., la misura di una [...] i c. dei monomi che lo compongono; in particolare, i c. di un’equazione algebrica sono i c. del polinomio che, eguagliato a zero, dà luogo all’equazione stessa.
C. angolare Il c. angolare di una retta r in un piano π rispetto a un dato sistema di ...
Leggi Tutto
Simulazione
Luigi Accardi
Mario Lucertini
Una delle maggiori innovazioni concettuali della scienza contemporanea, che coinvolge in ugual misura tutte le discipline scientifiche, è la transizione dalla [...] la proprietà P è la seguente: scelgo a caso dei numeri y e calcolo il valore di y tale che Q(x, y) sia minore di zero; posso allora concludere con certezza che x ha la proprietà P. Se però non trovo un tale y, allora non posso concludere niente e non ...
Leggi Tutto
Leggi di scala
Luciano Pietronero
Le leggi di scala riguardano il comportamento di una struttura in funzione della scala da cui la si guarda. Per i sistemi regolari, sia matematici sia fisici e naturali, [...] (r) = 〈n(r0)n(r0 + r)〉 .
La funzione n(r) vale uno, se il punto r appartiene alla struttura, altrimenti vale zero. La funzione di correlazione Γ(r) ci fornisce la probabilità condizionale che, dato un punto appartenente alla struttura (r0), ci sia un ...
Leggi Tutto
pressione
pressióne [Der. del lat. pressio -onis, dal part. pass. pressus di premere "premere"] [MCC] (a) Generic., l'azione del premere, cioè dell'esercitare una forza sulla superficie di un corpo. [...] 'ultimo e definendo poi la p. nel punto dato come il limite di tale rapporto quando si faccia tendere a zero l'area dell'elemento. Questa definizione è partic. significativa quando si considerano mezzi continui, dove le forze che intervengono non ...
Leggi Tutto
rappresentazione galoisiana
Massimo Bertolini
Sia ℚ il campo dei numeri razionali e si indichi con ℚ_ la chiusura algebrica di ℚ. Il campo ℚ_ è il sottocampo del campo dei numeri complessi contenente [...] Gℚ→GLd(K), dove K è un campo e GLd(K) è il gruppo delle matrici d×d a coefficienti in K aventi determinante diverso da zero. Nei casi in cui la definizione ha senso, si richiede che l’omomorfismo ϱ sia un’applicazione continua. Per esempio, se K è il ...
Leggi Tutto
gruppi quantistici
Luca Tomassini
Struttura algebrica introdotta e analizzata a partire dagli anni Ottanta del secolo scorso dai matematici russi Ludwig Faddeev e Vladimir Drinfeld e dal giapponese [...] una ‘deformazione’ delle relazioni (per es. ab=ba) che esprimono la loro commutatività:
dove q è un numero complesso differente da zero. La condizione sul determinante delle matrici si trasforma allora in a∼d∼−q−1b∼c∼=1. L’algebra Fq(SL(2,ℂ)) non ...
Leggi Tutto
Noether Max
Noether 〈nö´öter〉 Max [STF] (Mannheim 1844 - Erlangen 1921) Prof. di matematica nell'univ. di Heidelberg (1874) e poi (1875) in quella di Erlangen; socio straniero dei Lincei (1891). ◆ [ALG] [...] molteplicità rispettive s-1 e r-1 in ciascun punto P; nel caso particolare l=m=n, A e B risultano due polinomi di grado zero, e cioè due numeri, e si ottiene perciò che l'equazione di ogni curva algebrica di ordine n che passi per i punti comuni a ...
Leggi Tutto
Scienza che ha per oggetto lo studio dei fenomeni collettivi suscettibili di misura e di descrizione quantitativa: basandosi sulla raccolta di un grande numero di dati inerenti ai fenomeni in esame, e [...] e che ha luogo in assenza di forze tra le particelle, è detta temperatura di degenerazione o temperatura critica. Nel caso di bosoni con spin zero, di massa m, con hamiltoniana di singola particella H=p2/2m, si ha Tc=3,31 ρ2/3 ħ2/mk; per T<Tc il ...
Leggi Tutto
zero
żèro agg. e s. m. [dal lat. mediev. zèphyrum, adattam. (Leonardo Fibonacci nel Liber abbaci, 1202) dell’arabo ṣifr «nulla, zero», calco del sanscr. śūnyá «vuoto» e poi «zero» (v. anche cifra)]. – 1. a. Primo numero della successione naturale...
zero emissioni
loc. s.le f. pl. Riferito ad attività, prodotto, fonte di energia senza emissioni di anidride carbonica o di gas serra; anche nella loc. avv.le a zero emissioni. ♦ Ci sono Paesi con città larghe in cui l'alternativa è reale...