• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

foliazione

Enciclopedia on line
  • Condividi

In topologia, nozione, introdotta da C. Ehresmann e G. Reeb verso il 1950, che generalizza quella di spazio fibrato e che ha originato un ramo della topologia differenziale oggetto di ricerche e studi approfonditi. Sia Vn una varietà differenziabile di dimensione n e sia data un’applicazione differenziabile f: Vn→Wn-p che sia di rango massimo in ogni punto di Vn (cioè la matrice jacobiana delle funzioni che esprimono la f. mediante coordinate locali in V e in W abbia rango n−p, e perciò massimo, in ogni punto di Vn). Per ogni punto y ∈ Wn-p l’immagine inversa f−1 y, se connessa (ovvero le componenti connesse di f−1 y qualora f−1 y non sia connessa), si chiama foglia relativa all’applicazione considerata di V in W; la totalità delle foglie costituisce una f. di V.

Rispetto alla nozione di fibrazione, quella di f. è più generale nel senso che ogni fibrazione è una f. in cui le foglie si identificano con le fibre; viceversa non tutte le f. sono fibrazioni.

Vedi anche
teoria delle biforcazioni Capitolo della matematica che studia ogni variazione di tipo qualitativo che si possa riscontrare negli elementi di una famiglia di curve o di superfici o di campi di vettori, ecc., di;pendente da un certo numero di parametri. Uno degli esempi più semplici è dato dalla famiglia di curve y2=x(ax2+bx+c); ... spazio fibrato In matematica, concetto introdotto nel 1935 da H. Whitney in relazione a problemi di topologia e geometria delle varietà. Ha dato luogo a una teoria che ha avuto un enorme sviluppo, specialmente in connessione agli spazi vettoriali (A. Grothendieck, M.F. Atiyah, F. Hirzebruch) e ha condotto alla costruzione ... sistèma di riferiménto riferiménto, sistèma di Schematizzazione geometrica dello spazio al quale si riferisce un ente o fenomeno (per es. il moto di un corpo); più precisamente, insieme di elementi (origine, assi coordinati, unità di misura), che permette di associare a ogni ente geometrico (punto, retta ecc.) uno o più enti ... risultante fisica In analisi vettoriale, di un sistema di vettori, liberi o applicati, si dice risultante o somma vettoriale il vettore che si ottiene come risultato dell’operazione di composizione. In particolare, il risultante di due vettori è la diagonale del parallelogramma costruito sui due vettori (regola ...
Categorie
  • ANATOMIA MORFOLOGIA CITOLOGIA in Botanica
  • GEOMETRIA in Matematica
Tag
  • MATRICE JACOBIANA
  • IMMAGINE INVERSA
  • FIBRATO
Vocabolario
foliazióne
foliazione foliazióne (o fogliazióne) s. f. [der. di foglio (o del lat. folium)]. – 1. In codicologia e bibliologia, la numerazione dei fogli di un codice o di un libro a stampa (nel primo caso è sinon. di cartolazione per gli studiosi...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali