• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
lingua italiana
69 risultati
Tutti i risultati [107]
Matematica [69]
Algebra [29]
Fisica [20]
Geometria [15]
Biografie [14]
Fisica matematica [13]
Storia della matematica [12]
Analisi matematica [11]
Meccanica quantistica [9]
Meccanica [8]

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] solo rispetto a SO(n). Per una varietà complessa M con una metrica hermitiana, la forma di curvatura Ω=(Ωij) è antihermitiana, cioè essa assume i valori nell'algebra di Lie del gruppo unitario U(n). Come nella (61), poniamo Allora ci(Ω) è una 2i ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] trovato un'altra algebra di Hopf, che permette di definire i calcoli di rinormalizzazione nella teoria quantistica dei campi. L'algebra di Kreimer è commutativa; essa è l'algebra di Hopf duale dell'algebra inviluppo di un'algebra di Lie la cui base ... Leggi Tutto
CATEGORIA: GEOMETRIA

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] gauge è una 1-forma su M a valori in una rappresentazione di un'algebra di Lie e il gruppo di Lie corrispondente a tale algebra è detto gruppo di gauge del campo. Nell'integrale si considera come azione S(M, A) l'integrale su M della traccia della 3 ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] , gli elementi regolari di un gruppo di Lie, gli automorfismi elementari di un'algebra di Lie, gli elementi regolari di un'algebra di Lie, nonché le algebre di Lie scindibili. L'ottavo capitolo comincia con lo studio dell'algebra di Lie SL(2,k) per ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] volta la vera natura dei gruppi di Lie, diversa da quella delle algebre di Lie all'epoca molto più note. Egli considerò i gruppi infinitesimali di Lie e di Cartan (a rigore non si tratta di gruppi ma piuttosto di algebre), e determinò i gruppi a essi ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Algebra

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Algebra Claudio Procesi Algebra Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] Discutendo della moderna teoria delle algebre di Lie bisogna ricordare un campo di ricerche che ha avuto grande sviluppo, quello della teoria delle algebre inviluppanti. La nozione di algebra inviluppante di un'algebra di Lie è già presente, anche se ... Leggi Tutto
CATEGORIA: ALGEBRA

Invarianti, Teoria degli

Enciclopedia della Scienza e della Tecnica (2007)

Invarianti, Teoria degli Claudio Procesi La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] idea guida è la seguente: i gruppi riduttivi sono facilmente costruiti a partire da quelli la cui algebra di Lie è semplice. Secondo la classificazione di Killing e Cartan, vi sono fra questi 5 gruppi eccezionali e 4 serie infinite, che corrispondono ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: DOMINIO A FATTORIZZAZIONE UNICA – TEORIA DELLE RAPPRESENTAZIONI – TEOREMA DI CAYLEY-HAMILTON – CORRISPONDENZA BIUNIVOCA – SEGNO DELLA PERMUTAZIONE
Mostra altri risultati Nascondi altri risultati su Invarianti, Teoria degli (6)
Mostra Tutti

gruppi quantistici

Enciclopedia della Scienza e della Tecnica (2008)

gruppi quantistici Luca Tomassini Struttura algebrica introdotta e analizzata a partire dagli anni Ottanta del secolo scorso dai matematici russi Ludwig Faddeev e Vladimir Drinfeld e dal giapponese [...] una ‘deformazione’ (in un senso opportuno) di algebra di Lie g di un gruppo di Lie G. Nell’approccio di Faddeev il punto di partenza è l’algebra F(G) delle funzioni a valori complessi sul gruppo di Lie G considerato con prodotto commutativo definito ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: ALGEBRA COMMUTATIVA – STRUTTURA ALGEBRICA – GRUPPO DI SIMMETRIE – VLADIMIR DRINFELD – FISICA MATEMATICA

Kac Mark

Dizionario delle Scienze Fisiche (1996)

Kac Mark Kac 〈kaz〉 Mark [STF] (Krzemieniec, Polonia, 1914, nat. SUA - Los Angeles 1984) Prof. di matematica nella Cornell Univ. (1954), nella Rockefeller Univ. di New York (1961) e infine nell'univ. [...] della California del sud, a Los Angeles (1981). ◆ [ALG] Algebra di K.-Moody: particolare algebra di Lie infinito-dimensionale che interviene nelle teorie quantistiche di campo invarianti per trasformazioni conformi delle coordinate. ◆ [MCS] Equazione ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA TECNICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: MECCANICA STATISTICA – ALGEBRA DI LIE – LOS ANGELES – CALIFORNIA – MATEMATICA
Mostra altri risultati Nascondi altri risultati su Kac Mark (2)
Mostra Tutti

Koszul, Jean-Louis

Enciclopedia on line

Matematico francese (n. Strasburgo 1921 - m. 2018); prof. alle univ. di Strasburgo (1956-63) e di Grenoble (dal 1963). Notevoli i suoi contributi allo studio dell'algebra omologica (omologia e coomologia [...] in un'algebra di Lie), della teoria degli spazi fibrati e delle connessioni, dei gruppi di trasformazioni, delle forme armoniche. Una raccolta di 24 articoli di K. è stata pubblicata, nel 1994, con il titolo Selected papers of J.-L. Koszul. È stato ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ALGEBRA OMOLOGICA – STRASBURGO – GRENOBLE
1 2 3 4 5 6 7
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali