Dimostrazione, teoria della
Jean-Yves Girard
La teoria della dimostrazione nasce negli anni Venti del Novecento come strumento di realizzazione del programma di David Hilbert per la fondazione della [...] dell'aritmetica, dell'analisi, dell'algebra e di altri settori centrali della matematica gestione classica mentre la zona periferica formata da Γ e Δ sarà a gestione lineare. In questo modo tutte le regole strutturali si potranno applicare su Γ′ e ...
Leggi Tutto
L'Ottocento: matematica. La geometria non euclidea
Rossana Tazzioli
La geometria non euclidea
Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] n-dimensionale a partire dall'espressione del suo elemento lineare. Riemann non si limitava comunque a estendere le (1830-1903), Beltrami fu nominato nel 1862 professore di algebra complementare e geometria analitica all'Università di Bologna, senza ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Algebra
Claudio Procesi
Algebra
Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] molto vasto, legato al concetto di operatore lineare su uno spazio vettoriale e di linearizzazione di , si formano i prodotti tensoriali Ui⊗Vi e Ai⊗Bi (che si identifica con l'algebra di tutti gli operatori su Ui⊗Vi) e le somme dirette W:=⊕Ki=1Ui⊕Vi,R ...
Leggi Tutto
ENRIQUES, Federigo
Giorgio Israel
Nacque a Livorno il 5 genn. 1871 da Giacomo e da Matilde Coriat.
La famiglia si trasferi a Pisa, dove egli frequentò le scuole secondarie. Già qui manifestò la sua [...] seconda versione nel 1896 (Introduzione alla geometria sopra le superficie algebriche, in Memorie della Società dei XL, s. 3, X valore del plurigenere di ordine 12, P12, e del genere lineare assoluto p(1). E precisamente: le superficie razionali o ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] ‒ per certi aspetti simili ai gruppi compatti connessi e di cui è stata data un'analoga classificazione. Un gruppo linearealgebrico si dice riduttivo se non possiede alcun sottogruppo normale non banale formato da soli elementi unipotenti (ossia con ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'economia matematica 1870-1950
Angelo Guerraggio
L'economia matematica 1870-1950
Di matematica sociale comincia a parlare Condorcet nella Francia [...] Da un punto di vista tecnico, la matematica usata si riduce all'algebra dei sistemi di equazioni lineari e ai primi elementi del calcolo differenziale. Tucker, che nel 1951 inaugura la programmazione non lineare.
Negli anni Trenta le sedi in cui la ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria dei sistemi e controllo
Mark Aizerman
Teoria dei sistemi e controllo
La teoria del controllo si è formata, come campo di ricerca indipendente, [...] di Laplace questa eliminazione diviene una semplice operazione algebrica), si ottiene un'equazione differenziale ordinaria:
[1 dal raggio e dall'asse delle ascisse, il corrispondente sistema lineare sia stabile. Sorse la domanda: è vero che mediante ...
Leggi Tutto
Scienza greco-romana. Diofanto di Alessandria
Roshdi Rashed
Diofanto di Alessandria
Nel corso degli ultimi decenni la nostra conoscenza dell’opera di Diofanto di Alessandria è cambiata in maniera considerevole, [...] – per limitarci a loro – l’Aritmetica è un libro di algebra, nel senso in cui questi matematici intendevano allora tale disciplina. Per al Diofanto parla infatti di tre specie: quella del «numero lineare», quella del «numero piano» e, infine, quella ...
Leggi Tutto
Convessità
Arrigo Cellina
La convessità è un concetto della matematica elementare; le parole concavo e convesso fanno parte del linguaggio quotidiano. Eppure questo semplice concetto, unito ad altre [...] funzione a valori reali V definita su di un sottoinsieme di uno spazio lineare X viene detta convessa se per ogni x e y nel suo dominio nel 1947. Sia data una misura positiva μ su di una σ-algebra ∑ di uno spazio X. Un insieme E∈∑ è detto un atomo ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento
Jeremy Gray
Problemi di analisi complessa alla fine dell'Ottocento
La teoria generale [...] funzioni theta, per mezzo delle quali si potevano esprimere le soluzioni di ogni equazione differenziale lineare ordinaria a coefficienti algebrici; un risultato sorprendente, anche se ardue difficoltà si ergevano di fronte ai tentativi di applicare ...
Leggi Tutto
sostituzione
sostituzióne (ant. sustituzióne) s. f. [dal lat. tardo substitutio -onis, der. di substituĕre «sostituire»]. – 1. L’azione, l’atto di sostituire; il fatto di sostituirsi o di essere sostituito: nessuno si è accorto della s. dell’originale...
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...