La scienza in Cina: l'epoca Song-Yuan. La matematica
Karine Chemla
Annick Horiuchi
Andrea Eberhard-Bréard
La matematica
La rinascita della matematica e la tarda tradizione settentrionale
di Karine [...] testo in nostro possesso che se ne occupi: le Misurazioni del cerchio sullo specchio del mare di Li Ye.
Li Ye e l'algebra dei polinomi nel Nord della Cina
Tra il XII e il XIII sec., nelle regioni settentrionali dello Hebei e dello Shanxi, fa la ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1971-1980
1971-1980
1971
I problemi NP-completi. L'informatico americano Stephen Cook dà il primo esempio di problema algoritmico NP-completo. La classe NP [...] finiti l'ipotesi di Riemann classica per la funzione ζ. Le ricerche di Deligne creano un profondo legame tra geometria algebrica e teoria algebrica dei numeri e gli varranno la medaglia Fields nel 1978.
La scoperta dei lampi di raggi X e gamma. Viene ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] con cui nel 1934 O. Gelfond e T. Schneider, indipendentemente, avevano risolto il settimo problema di Hilbert: provare che, se α, β sono algebrici, α è diverso da 0 e da 1 e β irrazionale, allora αβ è trascendente. Baker dimostra che, se α1,…,αn sono ...
Leggi Tutto
Biologia
C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine [...] da un dato c. C, gli ampliamenti di C si distribuiscono in due grandi categorie: gli ampliamenti algebrici di C, in cui ogni elemento è algebrico rispetto a C, e gli ampliamenti trascendenti in cui ci sono anche elementi trascendenti. Per i primi si ...
Leggi Tutto
Insieme delle scienze che studiano in modo ipotetico-deduttivo entità astratte come i numeri e le misure: la m. pura studia i problemi matematici indipendentemente dalla loro utilizzazione pratica; alla [...] conoscenze matematiche dei Greci, con la risoluzione e la teoria delle equazioni di 3° e 4° grado per opera di algebristi italiani (S. Dal Ferro, N. Tartaglia, G. Cardano, L. Ferrari, R. Bombelli).
Il Seicento e il Settecento. - Già nel Cinquecento ...
Leggi Tutto
L'Ottocento: matematica. Immagini della matematica nell'Ottocento
Umberto Bottazzini
Immagini della matematica nell'Ottocento
Il panorama della matematica negli ultimi decenni del XIX sec. è per molti [...] sono destinati a fare epoca. I nuovi criteri di rigore adottati nel Cours mettono in evidenza i limiti della concezione 'algebrica' lagrangiana. D'altra parte, Cauchy condivide con Lagrange l'idea del primato dell'analisi e l'esigenza di chiarirne i ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Algebra, geometria, indivisibili
Enrico Giusti
Primi progressi nell’algebra
Dopo un periodo di gestazione lungo tre secoli, l’algebra è la prima disciplina in cui nel Cinquecento si registrano sostanziali [...] publicamente Euclide lì in Millano, e al presente fa stampare una sua opera in la pratica di Arithmetica e geometria e in Algebra che sarà una bella cosa. Et perché egli ha inteso voi esser stato in una disputa con maestro Antoniomaria Fiore, […] et ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] , gli spazi topologici noetheriani, lo spettro primo di un anello e la topologia di Zariski.
Il terzo capitolo è dedicato alle algebre graduate di tipo finito e agli anelli e moduli filtrati. Il quarto capitolo esamina gli ideali primi associati a un ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali
Haïm Brezis
Felix Browder
Equazioni differenziali alle derivate parziali
Lo studio delle equazioni [...] a priori.
Il nocciolo di questo metodo sta nell'importante proprietà del grado. Il grado, deg(I-C,G,p) si ottiene dal calcolo algebrico del numero di soluzioni dell'equazione:
[6] (I-C)u=p, u∈G
dove G è un aperto limitato in uno spazio di Banach ...
Leggi Tutto
La scienza bizantina e latina: la nascita di una scienza europea. Le discipline matematiche
Menso Folkerts
Richard P. Lorch
Anne Tihon
Le discipline matematiche
La matematica nell'Europa latina
di [...] di aree e volumi per figure piane e per solidi). I problemi di geometria erano spesso risolti con l'aiuto dell'algebra, riconducendoli a equazioni quadratiche; alcuni di essi ricordavano i testi di Savasorda e di Abū Kāmil. Come il Liber abaci, anche ...
Leggi Tutto
algebra
àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...
algebraico
algebràico agg. [der. di algebra] (pl. m. -ci), ant. – Algebrico: più quantità complesse a. ammettono un comune divisore (Beccaria); gli uomini del dì d’oggi vogliono dappertutto analisi, dimostrazioni e ciffre a. (A. Verri).