matematica Teoria della o. Capitolo della topologia algebrica che esamina in quali casi un’applicazione continua f: X→Y tra varietà differenziabili può essere estesa in un’applicazione f′: X’→Y, dove X′⊃X [...] e f′ coincide con f limitatamente a X. L’eventuale impossibilità di eseguire l’estensione (fenomeno dell’o.) è per solito segnalata dalla presenza di una certa classe di coomologia non nulla. La teoria ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] insieme di elementi forma un ideale J se è chiuso rispetto all'addizione e se [A,X] è in J per tutti gli A nell'algebra e tutti gli X nell'ideale. Si può dimostrare che l'insieme dei prodotti [Xi,Xi′] genera un ideale.
Lie trovò anche numerosi esempi ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana
Alberto Conte
Ciro Ciliberto
La scuola di geometria algebrica italiana
Gli inizi: Luigi Cremona e [...] . In ogni caso, il concetto stesso di spazio dei moduli non fu mai ben definito dalla scuola italiana. Una rigorosa costruzione algebrico-geometrica di Mg è dovuta a Mumford che, nel 1965, riprende l'idea di Enriques, ma parte da altre famiglie di ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] un insieme di rette che determinano così, con il loro inviluppo, una nuova curva detta duale. Se la prima curva è algebrica, risulta algebrica anche la curva duale e ci si può quindi chiedere se esista una relazione tra i gradi delle due curve. La ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'emergere della concezione strutturale in algebra
Leo Corry
L'emergere della concezione strutturale in algebra
Il punto di vista strutturale [...] dell'idea di struttura
Nei lavori con i quali furono gettate le basi per l'emergere del punto di vista strutturale in algebra ‒ lavori di Ernst Steinitz (1871-1928), Emmy Noether e Artin (per non citare che i più rilevanti) ‒ si avverte la profonda ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria
Emily Grosholz
La rivoluzione cartesiana e gli sviluppi della geometria
La rivoluzione [...] in cui Descartes tenta di definire un criterio secondo cui una curva possa essere considerata più semplice di un'altra. Il criterio è algebrico: una curva è più semplice se il grado della sua equazione è più basso. Il Libro III è per la maggior parte ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. La tradizione araba del Libro X degli Elementi
Marouane Ben Miled
La tradizione araba del Libro X degli Elementi
La storia delle letture [...] da Abū Kāmil e da Sinān ibn al-Fatḥ, aveva avviato nel suo Kitāb al-Ǧabr wa-'l-muqābala lo studio del calcolo algebrico. Anche Qusṭā ibn Lūqā e Abū al-Wafā᾽ al-Būzǧānī (le cui opere si inscrivono nella tradizione dell'Aritmetica di Diofanto) si erano ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. L'algebra e il suo ruolo unificante
Roshdi Rashed
L'algebra e il suo ruolo unificante
La seconda metà del VII sec. vede il costituirsi [...] tre casi a seconda che BC=AB, BC>AB e BC⟨AB. Consideriamo il primo caso, per BC=AB (fig. 5), che corrisponde alla condizione algebrica c1/3=a/2. Completiamo il quadrato DC e tracciamo l'iperbole A passante per D e che ammette AC e CE per asintoti ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] l'asse delle ascisse nel punto in cui
è un semplice esempio che chiarisce alcuni aspetti importanti del teorema fondamentale dell'algebra; esso riguarda la natura dei numeri reali e della nozione di continuità, ma non ha nulla a che fare con l ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] ci si limita ai numeri della forma a+b√5, con a e b interi ordinari, risulta che, (1+√5)/2 è radice dell'equazione algebrica x2−x−1=0, la quale ha coefficiente direttore uguale a 1: malgrado il denominatore 2 che vi compare, tale radice deve essere ...
Leggi Tutto
algebra
àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...
algebraico
algebràico agg. [der. di algebra] (pl. m. -ci), ant. – Algebrico: più quantità complesse a. ammettono un comune divisore (Beccaria); gli uomini del dì d’oggi vogliono dappertutto analisi, dimostrazioni e ciffre a. (A. Verri).