La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] razionali. Il differenziale e la derivata sono studiati per polinomi e frazioni razionali in un numero finito di variabili su un anello commutativo con identità; si precisa qui la derivazione di un'algebra. Si prendono infine in considerazione le ...
Leggi Tutto
campo delle frazioni
Luca Tomassini
Sia D un dominio di integrità (cioè un anello abeliano nel quale a≠0 e b≠0 implica ab≠0, per ogni a,b∈D). Sussiste allora il seguente teorema: ogni dominio di integrità [...] ay,y] in quanto (ax)y=x(ay). Indicando la classe di equivalenza [ax,x] con [a,1], definiamo Φ:D→F di un intero a con la frazione a/1. Un’analoga costruzione conduce alla definizione del campo delle funzioni razionali a partire dall’anello dei polinomi ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'emergere della concezione strutturale in algebra
Leo Corry
L'emergere della concezione strutturale in algebra
Il punto di vista strutturale [...] 'analisi unitaria della fattorizzazione nei campi di numeri e nei sistemi dipolinomi. Questo passo, cruciale per il successivo inquadramento di entrambe le questioni all'interno della teoria astratta degli anelli, sarebbe stato compiuto soltanto più ...
Leggi Tutto
corpo
Luca Tomassini
Consideriamo in un anello con unità A l’equazione ax=b, dove a,b sono elementi fissati e x un elemento ‘incognito’ di A. Un primo semplice caso è quello in cui a=0; poiché 0x=0 [...] è un campo (o corpo), in quanto l’inverso di un intero diverso da 1 non è evidentemente intero. Se A è un anello commutativo (e dunque in particolare se A è uguale a ℚ, ℝ o ℂ), l’insieme A[x1,...,xν] dei polinomi a n variabili con coefficienti in A è ...
Leggi Tutto
massimo
màssimo [agg. e s.m. Der. del lat. maximus, superlativo di magnus "grande" e quindi "il più grande" e, sostantivato, "cosa la più grande possibile"] [ALG] M. comune divisore di ideali di un anello: [...] il minore esponente. ◆ [ALG] M. comune divisore dipolinomi: il polinomiodi grado massimo che sia divisore comune di tutti i polinomi dati; si determina scomponendo questi ultimi in prodotti dipolinomi irriducibili e considerando poi i soli fattori ...
Leggi Tutto
numeri algebrici
Luca Tomassini
Numeri complessi (in particolare reali) che siano radici di un polinomio f(x)=anxn+...+a1x+a0 con coefficienti razionali non tutti nulli. Se α è un numero algebrico, [...] es., il numero 1+√√_2 è intero algebrico in quanto radice del polinomio x2−2x−1. Gli interi algebrici costituiscono un anello come i numeri interi, ma a differenza di questi ultimi costituiscono un sottoinsieme non discreto ma denso della retta reale ...
Leggi Tutto
sizigie
Francesco Amaldi
Sia R un anello commutativo noetheriano con unità. Sia M un modulo su R e sia dato un numero finito di generatori come R-modulo. Poiché R è noetheriano, l’R-modulo delle relazioni [...] esempio tipico è dato dal caso in cui M sia un’algebra di invarianti con un numero finito di generatori su un campo k ed R sia l’anello dei polinomi su k in tante indeterminate quanti sono i generatori dati di M. Si ha un omomorfismo suriettivo f:R→M ...
Leggi Tutto
graduato
graduato [agg. Der. di graduare "fare una graduazione"] [LSF] Che è ordinato o diviso per gradi, che procede per gradi. ◆ [ALG] Anello g. e modulo g.: anello o modulo in cui a ciascun elemento [...] legato alle operazione algebriche definite nell'anello o nel modulo considerati (per es., l'anello dei polinomi è un anello g.). ◆ [ALG] Retta g.: nella geometria descrittiva, la rappresentazione di una retta nel metodo delle proiezioni ...
Leggi Tutto
Numeri, teoria dei
Larry Joel Goldstein
La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri
…, −4, −3, −2, [...] anellidi interi dei corpi di numeri algebrici. Questi sistemi algebrici emergono in modo naturale nello studio di L'intero n è detto il grado di α e f(x) è detto il polinomio minimo di α. Indichiamo con F l'insieme di tutti i numeri della forma
[15] ...
Leggi Tutto
Laplace Pierre-Simon de
Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] anello, il quale avrebbe seguitato a rotare nel piano equatoriale della nebula, con lo stesso verso di rotazione di ANM] Polinomidi L.: polinomi armonici omogenei. ◆ [GFS] Punti di L.: nella geodesia, punti della superficie terrestre vertici di una ...
Leggi Tutto