• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
138 risultati
Tutti i risultati [629]
Matematica [138]
Fisica [165]
Temi generali [68]
Fisica matematica [55]
Chimica [50]
Biologia [46]
Analisi matematica [42]
Ingegneria [41]
Statistica e calcolo delle probabilita [39]
Storia della fisica [34]

Solitoni

Enciclopedia del Novecento (1989)

Solitoni Francesco Calogero SOMMARIO: 1. Introduzione: cenno storico.  2. Soluzione di equazioni lineari di evoluzione mediante la trasformata di Fourier.  3. L'equazione di Korteweg-de Vries.  4. La [...] (k, 0). (39) La (36) è un'equazione non lineare di evoluzione per la funzione u(x, t); o, meglio, si 6uxu = 0, u = u(x, t) (58) (in effetti, le due equazioni coincidono nell'approssimazione ut ≈ − ux), ammette la soluzione u(x, t) = A/cosh2[p(x − x0 − ... Leggi Tutto
TAGS: INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS – EQUAZIONE ALLE DERIVATE PARZIALI – TEORIA QUANTISTICA DEI CAMPI – SPAZIO DELLE CONFIGURAZIONI – EQUAZIONE DI SCHRÒDINGER
Mostra altri risultati Nascondi altri risultati su Solitoni (4)
Mostra Tutti

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] non negative x1,…,xk, Hardy e Littlewood dimostrarono che per k≥n2n vale la formula approssimata [18]  J(N;k,n)∼c(N;k,n)Nk/n-1, c(N; le forme si ottengono l'una dall'altra mediante un cambiamento lineare di variabile del tipo X=αX1+βY1, Y=γX1+δY1, ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] V*, quindi un ket ∣b〉, come elemento di V*, è una applicazione lineare ∣b〉 : V → C (il campo dei numeri complessi). La simmetria della sui cammini di Feynman. Questa cosiddetta ‛approssimazione di fase stazionaria' suggerisce una straordinaria serie ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA

Scienza greco-romana. Archimede

Storia della Scienza (2001)

Scienza greco-romana. Archimede Reviel Netz Archimede Archimede è l’unico dei matematici greci di cui abbiamo notizie storiche; questa eccezionalità è dovuta in parte ai risultati da lui ottenuti, [...] e in particolare presuppone un’approssimazione della radice quadrata di 3: determinare un valore approssimato di π (il rapporto sono il risultato di due movimenti, uno rotatorio e uno lineare, che generano una curva complicata. Poiché i due movimenti ... Leggi Tutto
CATEGORIA: BIOGRAFIE – STORIA DELLA MATEMATICA

Stocastica

Enciclopedia del Novecento (1984)

MMark Kac di Mark Kac SOMMARIO: 1. Preliminari. □ 2. Alcune sottigliezze matematiche. □ 3. Alcune classi generali di processi stocastici con esempi: a) processi di Markov con spazio degli stati finito [...] non quadratico V(x), l'equazione di Langevin non è lineare: Il processo a due componenti (x(t), p(t , x2, ..., xn) è gaussiana: la forma quadratica a secondo membro è l'approssimazione quadratica di S/k, dove S≡S(x1, x2, ..., xn) indica l'entropia ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – COEFFICIENTE DI CORRELAZIONE – GENETICA DELLE POPOLAZIONI – OSSERVAZIONE SPERIMENTALE – EQUAZIONE DI SCHRÖDINGER
Mostra altri risultati Nascondi altri risultati su Stocastica (2)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] dimostra il teorema di Ascoli. Spiega l'approssimazione delle funzioni continue numeriche con funzioni di compatto, una misura (di Radon) μ in E è una qualunque forma lineare continua nello spazio C(E) delle funzioni numeriche continue definite in E; ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] a ogni punto come un'approssimazione infinitesima. Analogamente per le connessioni es+er•des per r, s=1, ..., N. (21) Dato che ∂er/∂xi è una combinazione lineare di e1, ..., eN, possiamo scrivere dove ωrs è una 1-forma su M. Sostituendo la (22) ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

L'Età dei Lumi: matematica. I metodi numerici

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. I metodi numerici Peter Schreiber I metodi numerici Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] il teorema di Viète ci dice che questo zero coincide in prima approssimazione con il valore di −an−1, il coefficiente cambiato di 'abbandono, estremamente utile per certi scopi, della scrittura lineare. Leibniz aveva usato per la prima volta nel 1693 ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] da Hopf e continuata nel 1957 da Olga Arsen9evna Oleinik e Lax. EDP non lineari e analisi funzionale non lineare Il metodo delle approssimazioni successive, studiato fin da Picard negli anni Ottanta del XIX sec., fu enunciato in un elegante quadro ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Programmazione lineare

Enciclopedia delle scienze sociali (1997)

Programmazione lineare Robert Dorfman di Robert Dorfman  Programmazione lineare Introduzione La programmazione lineare è una famiglia di metodi matematici per individuare i modi più redditizi o in [...] 'estensione continua di livelli di attività può costituire un'approssimazione adeguata alla gamma di scelte di una pasticceria che una soluzione base ammissibile di un problema di programmazione lineare sono numeri interi se ogni riga e ogni colonna ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA – METODI TEORIE E PROVVEDIMENTI
TAGS: DIMENSIONE' DI UNO SPAZIO VETTORIALE – PROGRAMMAZIONE MATEMATICA – PROGRAMMI PER CALCOLATORE – ALGORITMO DEL SIMPLESSO – UNIVERSITÀ DI PRINCETON
Mostra altri risultati Nascondi altri risultati su Programmazione lineare (4)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 14
Vocabolario
oscillazióne
oscillazione oscillazióne s. f. [dal lat. tardo oscillatio -onis]. – 1. L’atto di oscillare, movimento periodico di un corpo che si muove fra due posizioni estreme (anche al plur., le o., intendendosi in tal caso con il sing. ciascuno degli...
lìnea
lìnea s. f. [dal lat. linea, der. di linum «lino2»; propr. «filo di lino»]. – 1. a. Ente geometrico che si estende nel senso della sola lunghezza, e che può essere matematicamente definito indipendentemente dalla sua materiale esistenza nonché...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali