• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
atlante
lingua italiana
208 risultati
Tutti i risultati [809]
Matematica [208]
Fisica [137]
Biografie [102]
Diritto [75]
Analisi matematica [63]
Temi generali [59]
Fisica matematica [59]
Storia della matematica [51]
Algebra [40]
Economia [38]

Equazioni differenziali: problemi non lineari

Enciclopedia della Scienza e della Tecnica (2007)

Equazioni differenziali: problemi non lineari Jean Mawhin La modellizzazione di molti problemi fisici porta alla ricerca di soluzioni di equazioni differenziali di secondo ordine, ordinarie o alle derivate [...] Leopold Kronecker nel 1869. Grado di Brouwer Calcolo algebrico delle soluzioni Anche se originariamente Brouwer armonica u: B3→S2, uguale all'identità su ∂B3 e tale da minimizzare l'integrale dell'energia ∫B3∣∣∇u∣∣2, è data da u(x)=x/∣∣x∣∣. Più in ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – TEOREMA DI ESISTENZA DEGLI ZERI – DIMOSTRAZIONE PER ASSURDO – TEOREMA DELLA DIVERGENZA
Mostra altri risultati Nascondi altri risultati su Equazioni differenziali: problemi non lineari (2)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo John McCleary La topologia algebrica all'inizio del XX secolo Le radici della topologia algebrica [...] lineari dei valori dell'integrale sui rappresentanti di omologia. Per precisare tale enunciato serviva una teoria delle forme differenziali e questa fu fornita da élie Cartan (1869-1951) che introdusse il calcolo esterno delle forme differenziali ... Leggi Tutto
CATEGORIA: GEOMETRIA

L'Ottocento: matematica. Metodi del calcolo numerico

Storia della Scienza (2003)

L'Ottocento: matematica. Metodi del calcolo numerico Dominique Tournès Metodi del calcolo numerico Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] : Oltre alla costruzione di tavole, un'applicazione essenziale dell'interpolazione riguarda le quadrature numeriche, cioè il calcolo approssimato degli integrali definiti. Dall'epoca di Newton, di Roger Cotes e di Thomas Simpson la tecnica di base ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Matematica pura e applicata nel XVIII secolo

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Matematica pura e applicata nel XVIII secolo Ivor Grattan-Guinness Matematica pura e applicata nel XVIII secolo Nel presente volume la determinazione cronologica 'Settecento' [...] emersero altre figure di rilievo, nemmeno per riformulare nel linguaggio delle flussioni l'ampia estensione del calcolo differenziale e integrale passato dalla variabile unica alla sua forma a variabili multiple, con le equazioni alle derivate ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Simulazione, modelli di

Enciclopedia delle scienze sociali (1997)

Simulazione, modelli di Italo Scardovi Modelli e simulazioni nella scienza Secondo l'etimo latino, 'simulare' sta per 'render simile', come vuole la sua derivazione da similis; e tuttavia il verbo ha [...] delle probabilità ('probabilità geometriche', nella fattispecie), anticipava i criteri per il calcolo approssimato, con metodi aleatori, di un integrale definito. Modelli economici e simulazioni econometriche Le simulazioni attraverso modelli - dai ... Leggi Tutto
CATEGORIA: LOGICA MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – METODI TEORIE E PROVVEDIMENTI
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – CALCOLO DELLE PROBABILITÀ – APPROSSIMAZIONE NUMERICA – CIRCOLAZIONE DEL SANGUE – PROGRAMMAZIONE LINEARE
Mostra altri risultati Nascondi altri risultati su Simulazione, modelli di (6)
Mostra Tutti

Combinatoria

Enciclopedia della Scienza e della Tecnica (2007)

Combinatoria Peter J. Cameron Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri non rappresenta una branca separata dalle altre ma le pervade tutte, poiché [...] e XIX sec., il punto di vista del continuo ha avuto il predominio. A seguito dello sviluppo del calcolo differenziale e integrale di Isaac Newton e Gottfried W. Leibniz, sembrò che il mondo si potesse comprendere utilizzando tecniche analitiche come ... Leggi Tutto
CATEGORIA: ALGEBRA – ARITMETICA
TAGS: PRINCIPIO DI ESCLUSIONE DI PAULI – TEORIA DELLE RAPPRESENTAZIONI – INSIEMI PARZIALMENTE ORDINATI – PROBLEMA DEI QUATTRO COLORI – FONDAMENTI DELLA MATEMATICA
Mostra altri risultati Nascondi altri risultati su Combinatoria (4)
Mostra Tutti

L'Ottocento: matematica. Calcolo delle variazioni

Storia della Scienza (2003)

L'Ottocento: matematica. Calcolo delle variazioni Craig Fraser Calcolo delle variazioni Il problema di Euler Nel 1744 Leonhard Euler formulò il problema principale del calcolo delle variazioni nei [...] alla conclusione che la soluzione y=y(x), se esiste, deve soddisfare la seguente equazione differenziale: Egli ottenne la [2] calcolando l'integrale [1] prima lungo la curva y(x), poi lungo un'altra curva passante ‒ come la y(x) ‒ per uno stesso ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Algebra della logica

Storia della Scienza (2003)

L'Ottocento: matematica. Algebra della logica Massimo Mugnai Algebra della logica Logica e matematica: pensare e calcolare Sia nell'Antichità sia durante il Medioevo, la logica e la matematica si configurano [...] stessi Babbage, Herschel e Peacock) del Traité du calcul différentiel et du calcul intégral (1799), un testo introduttivo al calcolo differenziale e integrale del matematico francese Sylvestre-François Lacroix (1763-1843). Grazie anche all'attività ... Leggi Tutto
CATEGORIA: ALGEBRA – LOGICA MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Teoria dei sistemi e controllo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria dei sistemi e controllo Mark Aizerman Teoria dei sistemi e controllo La teoria del controllo si è formata, come campo di ricerca indipendente, [...] quadratica del processo, può esser calcolato per mezzo delle frequenze caratteristiche senza conoscere i parametri del processo transiente stesso. Contemporaneamente stime integrali dettagliate forniscono importanti informazioni sulle deviazioni ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali ordinarie

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali ordinarie Jeremy Gray Equazioni differenziali ordinarie Variabili reali Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] più importanti alla matematica pura e applicata dall'invenzione del calcolo in poi. In sintesi, Fourier aveva mostrato che una si basa sul fatto che a meno che n=m, nel qual caso entrambi gli integrali [8] sono uguali a π. Le [7] e [8] sono note ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 14 ... 21
Vocabolario
integrale
integrale agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...
càlcolo¹
calcolo1 càlcolo1 s. m. [dal lat. calcŭlus, propr. «pietruzza» (cfr. càlcolo2), attrav. il sign. di «gettone per fare i conti»]. – 1. a. Successione più o meno lunga di operazioni atte a fornire la soluzione di un dato problema aritmetico,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali