• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
34 risultati
Tutti i risultati [88]
Matematica [34]
Fisica [46]
Temi generali [18]
Elettrologia [16]
Fisica matematica [14]
Geometria [9]
Statistica e calcolo delle probabilita [13]
Algebra [12]
Meccanica dei fluidi [12]
Biografie [10]

Wavelet

Enciclopedia Italiana - VII Appendice (2007)

Wavelet Silvia Bertoluzza Il concetto di wavelet (ondina) fu introdotto per la prima volta dal geofisico francese J. Morlet attorno al 1975. Insieme al fisico francese A. Grossmann, Morlet mise a punto, [...] efficienza. Questa proprietà trova anche applicazione nel campo della rimozione del rumore (denoising). Un'altra , può essere adattato a dimensioni maggiori di uno per prodotto tensoriale nonché all'intervallo e, più in generale, a domini limitati ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TRASFORMATA DI FOURIER – ANALISI DEI SEGNALI – SUPPORTO COMPATTO – METEOROLOGIA
Mostra altri risultati Nascondi altri risultati su Wavelet (3)
Mostra Tutti

LEVI-CIVITA, Tullio

Dizionario Biografico degli Italiani (2005)

LEVI-CIVITA, Tullio Luca Dell'Aglio Nacque a Padova il 29 marzo 1873 da Bice Lattis e da Giacomo, avvocato e uomo politico, che fu sindaco di Padova tra il 1904 e il 1910 e senatore del Regno dal 1908. [...] veneto di scienze, lettere ed arti, s. 7, V [1893-94], pp. 1447-1523) il L. iniziò a occuparsi dei metodi tensoriali, soprattutto in relazione alle loro applicazioni in campo fisico-matematico. Egli giunse, in particolare, alla soluzione per via ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ACCADEMIA NAZIONALE DEI LINCEI – DUALISMO "ONDA/CORPUSCOLO – GEOMETRIA DIFFERENZIALE – TEORIA DELLA RELATIVITÀ – PROBLEMA DEI TRE CORPI
Mostra altri risultati Nascondi altri risultati su LEVI-CIVITA, Tullio (6)
Mostra Tutti

Algebra

Enciclopedia del Novecento (1975)

Algebra Irving Kaplansky sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] rispettivamente; i simboli vi ⊗ wj formano una base del prodotto tensoriale V ⊗ W. Il prodotto esterno è definito su un solo il miglior risultato possibile. Per le matrici 2 × 2 su un campo ed anche per i corpi di quaternioni su F (cioè algebre con ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ALGEBRA – COSTRUZIONI CON RIGA E COMPASSO – DOMINIO A FATTORIZZAZIONE UNICA – INSIEME PARZIALMENTE ORDINATO – RAPPRESENTAZIONI IRRIDUCIBILI
Mostra altri risultati Nascondi altri risultati su Algebra (9)
Mostra Tutti

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] A di sottospazi lineari D(A) → E, non continue e i cui campi di definizione D(A) sono compatti in norma in E, vale a dire fattori di tipo III da parte di A. Connes. Con l'aiuto del prodotto tensoriale infinito L (C2) ⊗ L (C2) ⊗ L (C2) ..., R. Power ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] e quelle simili. Si prende in esame il prodotto tensoriale di matrici equivalenti e simili. Si introducono i gruppi e le prepara la via. Dopo Jordan viene Lebesgue e si entra nel campo di un altro libro della presente opera. (1976, FVR, cap. III, ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] la dimensione dello spazio mP/(mP)2 è uguale a quella del campo dei resti A(C)/m, mentre se P è singolare è maggiore E2x. In modo analogo, il prodotto tensoriale di due spazi si generalizza nel prodotto tensoriale di due fibrati vettoriali, e queste ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] divenire una parte importante della più vasta analisi tensoriale. Nel 1900 lo studio della geometria differenziale di stabilire sotto quali condizioni una n-varietà ammette n campi vettoriali ovunque linearmente indipendenti, una ricerca che lo portò ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Algebra

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Algebra Claudio Procesi Algebra Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] le classi di isomorfismo di corpi di dimensione finita con centro il campo dato e in cui il prodotto è dato usando il teorema di Wedderburn: da tale teorema si deduce che il prodotto tensoriale di due corpi sul loro centro è l'algebra di tutte le ... Leggi Tutto
CATEGORIA: ALGEBRA

La seconda rivoluzione scientifica: matematica e logica. Il calcolo geometrico

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il calcolo geometrico Paolo Freguglia Gert Schubring Il calcolo geometrico Quando pubblicò il trattato Die lineale Ausdehnungslehre (La teoria [...] (1857-1922), uno dei suoi figli attivi in campo matematico, professore di matematica all'Università di Giessen, della relatività di Einstein il calcolo vettoriale e tensoriale divenne strumento irrinunciabile della geometria differenziale, e ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

momento

Dizionario delle Scienze Fisiche (1996)

momento moménto [Der. del lat. momentum "piccola causa di movimento", dalla radice di movere "muovere", e poi "piccola cosa" in genere] [LSF] Oltre ai signif. nella meccanica e in discipline a questa [...] la molecola dell'acqua o quella dell'ammoniaca) e dei campi d'induzione magnetica, che non ammettono sorgenti scalari (poli) dei casi, di sorgente magnetica vettoriale (m. magnetico dipolare), tensoriale di rango 2, 3, ecc. (m. magnetico quadrupolare ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – GEOFISICA – MECCANICA – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su momento (2)
Mostra Tutti
1 2 3 4
Vocabolario
campo
campo s. m. [lat. campus «campagna, pianura» poi «campo di esercitazioni, campo di battaglia»]. – Termine che ha assunto (per evoluzione dai sign. principali che già aveva nella lingua d’origine) notevole varietà di accezioni e di usi, rimanendo...
sorgènte
sorgente sorgènte (letter. ant. surgènte) s. f. [femm. sostantivato del part. pres. di sorgere]. – 1. Il punto e il luogo in cui scaturisce, per defluire, una vena d’acqua sotterranea; anche, lo specchio d’acqua che tale vena forma prima di...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali