In geometria, varietà algebrica del quarto ordine; in particolare, q. razionale normale è la curva dello spazio a 4 dimensioni di equazioni x1=t, x2=t2, x3=t3, x4=t4.
Le q. si distinguono in q. piane [...] un esempio è la lemniscata di Bernoulli. Il classico teorema di Steiner per le coniche si generalizza alle q. (e anzi alle curvealgebriche piane di ordine qualsiasi) nel seguente modo: scelti 4 punti qualunque P1, P2, P3, P4 su una q., le rette che ...
Leggi Tutto
In genere, qualsiasi cosa che avvolge strettamente.
Matematica
Inviluppo di una famiglia di curve piane È una curva L tale che per ogni suo punto P passi una e una sola curva della famiglia data avente [...] (fig. 3A) o come l’i. delle tangenti t a essa (fig. 3B). Se la curva è algebrica, l’i. delle sue tangenti è un ente algebrico: ciò vuol dire che esiste un’equazione algebrica, in coordinate di retta, soddisfatta da tutte e sole le rette tangenti alla ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] che assegna a ogni elemento di Cp,q la sua lunghezza d'arco. Quando una curva è data da xi(t), a≤t≤b, la sua lunghezza è data dall Ω=(Ωij) è antihermitiana, cioè essa assume i valori nell'algebra di Lie del gruppo unitario U(n). Come nella (61), ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Geometria delle coniche, luoghi, contatti e costruzioni
Philippe Abgrall
Hélène Bellosta
Geometria delle coniche, luoghi, contatti e costruzioni
L'opera [...] Maqāla fī 'l-ǧabr wa-'l-muqābala (Trattato sull'algebra). Vi si trova anche, come quarto metodo, quello , vertice D e lato retto DB. Egli dimostra poi che le due curve si intersecano necessariamente in un punto che si trova sull'iperbole tra E e ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] Tale distanza è data da:
dove D=ds−1 e A è l'algebra delle funzioni lisce. Si osservi che ds ha la dimensione di una lunghezza γ(z)=γ-(z)-1γ(z) z∈C
dove C⊂P1(ℂ) è un curva semplice liscia, C− la componente del complementare di C che contiene ∞∉C e ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Algebra, geometria, indivisibili
Enrico Giusti
Primi progressi nell’algebra
Dopo un periodo di gestazione lungo tre secoli, l’algebra è la prima disciplina in cui nel Cinquecento si registrano sostanziali [...] Al contrario, anche se non disdegna di studiare casi singoli, l’oggetto della geometria cartesiana è la curva ‘generica’, espressa mediante un’equazione algebrica in due variabili F(x,y)=0, e il problema diventa quello di trovare dei metodi generali ...
Leggi Tutto
Nodi e fisica
Louis H. Kauffman
Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] cuore: vorremmo poter calcolare numeri (o entità algebriche come polinomi) a partire da un qualsiasi 'ultima è chiamata ‛norma' dello stato ed è definita come il numero di curve chiuse che compongono S, ‛meno uno'; così nell'esempio di cui sopra si ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] con l'ausilio di strumenti geometrici che geometria affrontata con strumenti algebrici. James Stirling (1692-1770) pubblicò nel 1717 un libro sulle curvealgebriche piane ‒ Lineae tertii ordinis neutonianae ‒, con particolare riguardo a quelle di ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] su questo argomento, dimostrando così che esistono superfici minime la cui equazione è algebrica, superfici minime rigate, superfici minime con una data curva piana come geodetica, superfici minime non orientabili (la superficie di Henneberg), e così ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] teoremi di dualità ponevano un nuovo problema nel contesto algebrico dei gruppi di omologia. Per Poincaré, la dualità due punti di S2 e considerandone le controimmagini, che in generale sono curve chiuse: γ(f) è dato allora dal loro linking number, e ...
Leggi Tutto
curva1
curva1 s. f. [femm. sostantivato dell’agg. curvo]. – 1. a. Nel linguaggio com., ogni linea che non sia retta. b. In matematica, sinon. di linea, intendendosi quindi anche la retta come una particolare curva. Molte curve di tipo particolare...
hessiano
〈e-〉 agg. [der. del nome del matematico ted. L. O. Hesse (1811-1874)]. – Curva h. (o hessiana s. f.), per una data curva algebrica piana, è la curva algebrica luogo dei punti doppî delle polari della curva, che incontra quest’ultima,...