Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Algebra, geometria, indivisibili
Enrico Giusti
Primi progressi nell’algebra
Dopo un periodo di gestazione lungo tre secoli, l’algebra è la prima disciplina in cui nel Cinquecento si registrano sostanziali [...] Al contrario, anche se non disdegna di studiare casi singoli, l’oggetto della geometria cartesiana è la curva ‘generica’, espressa mediante un’equazione algebrica in due variabili F(x,y)=0, e il problema diventa quello di trovare dei metodi generali ...
Leggi Tutto
Scienza greco-romana. La geometria da Apollonio a Eutocio
Reviel Netz
La geometria da Apollonio a Eutocio
Il periodo di formazione del canone geometrico greco si estende dal 200 a.C. al 550 d.C., come [...] dal fatto che queste curve sono considerate da un punto di vista sistematico, distinguendo i vari tipi in base alle loro proprietà, proprietà che sono dimostrate nel trattato. L’opera di Apollonio, dunque, non è più algebrica di quella di Euclide ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] determinazione di una costante ϑ=ϑ(n) tale che per un numero algebrico α di ordine n la disuguaglianza ∣α−p/q∣>q−ϑ +yn−1=0, e l'ultimo teorema stesso afferma che su questa curva giacciono esattamente due punti razionali, e più precisamente (0,1) e ...
Leggi Tutto
Nodi e fisica
Louis H. Kauffman
Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] cuore: vorremmo poter calcolare numeri (o entità algebriche come polinomi) a partire da un qualsiasi 'ultima è chiamata ‛norma' dello stato ed è definita come il numero di curve chiuse che compongono S, ‛meno uno'; così nell'esempio di cui sopra si ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria
Emily Grosholz
La rivoluzione cartesiana e gli sviluppi della geometria
La rivoluzione [...] , ma oltre la quale non può avventurarsi. È da qui che trae origine la distinzione che Descartes opera fra curvealgebriche e curve trascendenti, le une da includere nella geometria, le altre, invece, da bandire.
Il canone intuizionista cartesiano è ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] con l'ausilio di strumenti geometrici che geometria affrontata con strumenti algebrici. James Stirling (1692-1770) pubblicò nel 1717 un libro sulle curvealgebriche piane ‒ Lineae tertii ordinis neutonianae ‒, con particolare riguardo a quelle di ...
Leggi Tutto
L'Eta dei Lumi: matematica. I metodi numerici
Peter Schreiber
I metodi numerici
Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] concettuali. Per questo motivo occupano una posizione dominante, come precursori del futuro concetto aritmetico-algebrico di funzione e di numero, i concetti di punto, curva e superficie. Nel XVII sec. l'odierna funzione reale di una o più variabili ...
Leggi Tutto
Misura e integrazione
M. Evans Munroe
Introduzione
La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] definizione fondamentale. Sia X un insieme e Σ una classe di sottoinsiemi di X; in tal caso, si dice che Σ è una ‛σ-algebra' se sono soddisfatte le seguenti condizioni: a) l'insieme vuoto appartiene a Σ (cioè 0/ ∈Σ); b) se un insieme A è elemento di ...
Leggi Tutto
Equazioni funzionali
JJacques Louis Lions
di Jacques Louis Lions
Equazioni funzionali
sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] area della superficie x→u(x)
per u che si appoggia su una data curva, cioè per
u = ϕ con (x1, x2) ∈ ∂Ω = Γ ) ∀ vh ∈ Vh. (31)
Il sistema (31) è ancora un sistema algebrico lineare, in cui il numero delle equazioni è uguale alla dimensione di Vh.
Nei ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] su questo argomento, dimostrando così che esistono superfici minime la cui equazione è algebrica, superfici minime rigate, superfici minime con una data curva piana come geodetica, superfici minime non orientabili (la superficie di Henneberg), e così ...
Leggi Tutto
curva1
curva1 s. f. [femm. sostantivato dell’agg. curvo]. – 1. a. Nel linguaggio com., ogni linea che non sia retta. b. In matematica, sinon. di linea, intendendosi quindi anche la retta come una particolare curva. Molte curve di tipo particolare...
hessiano
〈e-〉 agg. [der. del nome del matematico ted. L. O. Hesse (1811-1874)]. – Curva h. (o hessiana s. f.), per una data curva algebrica piana, è la curva algebrica luogo dei punti doppî delle polari della curva, che incontra quest’ultima,...