• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
70 risultati
Tutti i risultati [167]
Matematica [70]
Fisica [39]
Storia della matematica [24]
Geometria [18]
Analisi matematica [20]
Temi generali [19]
Fisica matematica [19]
Statistica e calcolo delle probabilita [17]
Algebra [14]
Storia della fisica [12]

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] congetturò che su una curva F(x,y)=0 di genere almeno 1, giace un numero finito di 'punti razionali' (punti =1+2+3), il problema dell'infinità dei numeri primi di Fermat, di Mersenne e di Gauss (numeri primi della forma, rispettivamente, 22n+1, 2p+1 ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

L'Ottocento: matematica. Meccanica analitica

Storia della Scienza (2003)

L'Ottocento: matematica. Meccanica analitica Helmut Pulte Meccanica analitica La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] non viene fatto cioè tra la curva percorsa e altre curve di una classe in un dato periodo di tempo: i singoli punti sono invece un ruolo sempre minore, anche se August Ritter, allievo di Gauss, nella sua tesi del 1853 dedicava ancora molta attenzione ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – MATEMATICA APPLICATA – STATISTICA E CALCOLO DELLE PROBABILITA – METAFISICA – STORIA DEL PENSIERO FILOSOFICO

L'Età dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele Peter Schreiber Geometria analitica, delle curve e delle superfici. Il problema delle parallele A [...] of curvilinear figures, e come appendice dell'Opticks (i tipi di curve di terzo grado considerati sono però soltanto 72). Solamente nel XVIII , suggerita dalla geodesia, si arriverà solamente con Gauss a partire dal 1828. Il problema delle parallele ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. I metodi numerici

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. I metodi numerici Peter Schreiber I metodi numerici Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] ) chiama y=P(x) "curva di tipo parabolico", in riferimento all'ordinaria parabola y=ax2+bx+c, per distinguerla dalle curve del tipo yn=P(x) aritmetica è il valore più probabile, cosa che né Gauss né i sostenitori del metodo dei minimi quadrati faranno ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] di un punto) sul quale misurare le distanze lungo una curva. Ciò permette di definire le geodetiche (le curve di soltanto se la sua prima classe di Stiefel-Whitney è nulla. Allo scopo di generalizzare il teorema di Gauss-Bonnet a n dimensioni, Carl ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura Maurice Sion La teoria della misura Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] Nel 1914, allo scopo di estendere la nozione di lunghezza di una curva, di area di una superficie, e così via la sua frontiera. Le versioni classiche, note come teoremi di Stokes e Gauss, largamente usate in aree quali l'idrodinamica e l' ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo John McCleary La topologia algebrica all'inizio del XX secolo Le radici della topologia algebrica [...] di Carl Friedrich Gauss, i primi passi di una classificazione dei nodi basata sull'intuizione iniziata dallo stesso Gauss teorema generalizza il teorema della curva di Jordan a dimensioni superiori : un sottoinsieme X di ℝn omeomorfo a una sfera ... Leggi Tutto
CATEGORIA: GEOMETRIA

L'Ottocento: matematica. Metodi del calcolo numerico

Storia della Scienza (2003)

L'Ottocento: matematica. Metodi del calcolo numerico Dominique Tournès Metodi del calcolo numerico Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] di Lalanne, del 1846, per le equazioni di terzo grado. Più in generale si sviluppano tecniche di calcolo grafico per costruire per punti la curva di 1B. Sia nel metodo di Jacobi sia in quello di Gauss-Seidel l'idea è quella di mettere il sistema nella ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. La geometria non euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. La geometria non euclidea Rossana Tazzioli La geometria non euclidea Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] completa analogia tra la sua teoria e quella gaussiana: nel caso di una superficie curva la misura di curvatura di Riemann coincide infatti con quella di Gauss. La nozione di curvatura sarà estesa dallo stesso Riemann a una varietà qualsiasi (anche ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali ordinarie

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali ordinarie Jeremy Gray Equazioni differenziali ordinarie Variabili reali Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] i punti (xn,yn) sono arbitrariamente vicini alla curva che è soluzione dell'equazione: è così dimostrata l fase nel lavoro di Kummer la variabile è reale). Riemann e le questioni di monodromia La risposta più profonda allo studio di Gauss della e.i.g ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7
Vocabolario
gaussiano
gaussiano agg. [dal nome del matematico e fisico ted. K. F. Gauss (1777-1855)]. – In geometria: curvatura g., numero, associato a ogni punto ordinario di una superficie dello spazio euclideo, che indica di quanto e in qual modo è incurvata...
curva¹
curva1 curva1 s. f. [femm. sostantivato dell’agg. curvo]. – 1. a. Nel linguaggio com., ogni linea che non sia retta. b. In matematica, sinon. di linea, intendendosi quindi anche la retta come una particolare curva. Molte curve di tipo particolare...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali