OPERATORI; OPERAZIONALE, CALCOLO (od operatorio, calcolo)
Tullio Viola
Riteniamo opportuno aggiungere alle considerazioni svolte nelle voci: operatori (App. III, 11, p. 317) e simbolico, calcolo (App. [...] tende al suo limite finito F′ ∣ [f (x), ξ], uniformemente al variare sia di ξ in [a, b], sia di f (x) in C.
IV) La derivata F′ ∣ [f (x), ξ] è continua sia rispetto alla f (x) in C, sia rispetto alla ξ in [a, b].
Sotto tali ipotesi, Volterra dimostra ...
Leggi Tutto
soluzioni deboli
Luca Tomassini
Consideriamo un operatore differenziale lineare
definito su un aperto connesso A di ℝn, dove le ak(x) sono funzioni su A sufficientemente regolari (per es. differenziabili [...] debole stessa, in linea di principio solo localmente integrabile e dunque potenzialmente molto irregolare, è in realtà derivabile un numero sufficiente di volte. Per es., nel caso delle equazioni cosiddette ellittiche ogni soluzione debole è ...
Leggi Tutto
trasformata di Fourier
Luca Tomassini
Una trasformazione integrale che mappa una funzione a valori complessi f(x):ℝn→ℂ nella sua corrispondente trasformata di Fourier (detta anche funzione spettrale [...] importanza teorica e pratica. Da un lato essa ci dice (sotto opportune ipotesi) che più una funzione è liscia (derivabile) più velocemente la sua trasformata di Fourier si avvicinerà a zero quando ∣∣x∣∣→±∞, dall’altro è chiaro che permette di ...
Leggi Tutto
esponenziale
esponenziale [agg. e s.m. Der. di esponente] [ANM] E. complesso: la funzione e. con argomento complesso, definibile a partire dalla serie e. (v. oltre); è legato alle funzioni seno e coseno [...] es., expx expy=exp(x+y), expx/expy=exp(x-y). Per quanto riguarda le proprietà differenziali, si tratta di una funzione infinitamente derivabile e le sue derivate sono ancora e.; precis., per l'e. di una sola variabile x, è (d/dx) expx=expx, oppure ...
Leggi Tutto
serie di Fourier
Luca Tomassini
L’espressione di una funzione f di una o più variabili reali per mezzo di un sistema di funzioni ortonormali. Più precisamente, sia F uno spazio vettoriale (completo) [...] più forte che nella norma dello spazio L2([0,2π]) (per esempio della convergenza uniforme) qualora la funzione f possieda proprietà di regolarità (per esempio sia continua o derivabile) ha una risposta nel teorema di Dirichlet.
→ Fisica matematica ...
Leggi Tutto
congettura di Birch e Swinnerton-Dyer
Massimo Bertolini
È considerata una delle questioni fondamentali della matematica contemporanea. La congettura in questione stabilisce una relazione tra le proprietà [...] su tutti i primi p che non dividono ΔΕ . Si dimostra che questo prodotto infinito converge a una funzione analitica (cioè derivabile in senso complesso) sul semipiano dei numeri complessi la cui parte reale è maggiore di 3/2. Inoltre, il lavoro di ...
Leggi Tutto
Equazioni funzionali
JJacques Louis Lions
di Jacques Louis Lions
Equazioni funzionali
sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] g, ϕ > il prodotto scalare tra g ∈ D′ e ϕ ∈ D, nella dualità tra D′ e D; se g è una funzione, allora
e se g è derivabile, allora
Ora, se g ∈ D′, si assume la (13) come definizione di ∂g/∂xi.
Si verifica che (∂g/∂xi) ∈ D′ e si definisce Dαg per ...
Leggi Tutto
operatori lineari
Luca Tomassini
Un’applicazione A:E→F di uno spazio lineare E in uno spazio lineare F (anche coincidente con E) su un campo K (che qui identificheremo con i numeri complessi ℂ) tale [...] funzioni continue su un intervallo [a,b]: in questo caso D(d/dx)fiC([a,b]) poiché una funzione continua non è sempre derivabile. Di fondamentale importanza è poi la nozione di operatore inverso A−1 di un operatore dato A. In particolare A:E→F è detto ...
Leggi Tutto
Successione ordinata e continua di elementi, concreti e astratti, dello stesso genere.
Ecologia
Successione delle comunità che si sostituiscono l’una all’altra in una regione. Le comunità di transizione [...] =0 per i k negativi si rientra nelle s. ordinarie di potenze.
S. di Taylor
Per una funzione di variabile reale o complessa f(x) infinitamente derivabile in un punto x0, è la s. di potenze
∑∞n=0an(x−x0)n, dove an=f(n)(x0)/n!. Se in un intorno di x0 ...
Leggi Tutto
Economia
Dazio d. Dazio che si applica su merci provenienti da paesi con cui si è in guerra doganale o a essi dirette, e che è perciò superiore a quello imposto sulle stesse merci importate o esportate [...] il simbolo dy, o anche con df. Si dimostra che l’esistenza del d. si accompagna sempre a quella della derivata, e che risulta a=f′ (x) (ove f′ è la derivata di f). In formule si ha:
in cui ε è una quantità che tende a zero quando Δx tende a zero ...
Leggi Tutto
derivabile
derivàbile agg. [dal lat. tardo derivabĭlis]. – Che si può derivare (nelle varie accezioni di derivare1). In matematica, funzione d., funzione che ammette derivata.
derivare1
derivare1 v. intr. e tr. [dal lat. derivare tr., propr. «trarre l’acqua da un ruscello», der. di rivus «ruscello, corso d’acqua»]. – 1. intr. (aus. essere) Scaturire, aver origine, provenire (detto di un corso d’acqua): il Po deriva...