• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
26 risultati
Tutti i risultati [48]
Matematica [26]
Fisica [8]
Geometria [9]
Temi generali [8]
Fisica matematica [6]
Storia della matematica [6]
Algebra [5]
Statistica e calcolo delle probabilita [3]
Analisi matematica [2]
Biografie [2]

fibrato vettoriale

Enciclopedia della Scienza e della Tecnica (2008)

fibrato vettoriale Luca Tomassini Un fibrato {B,X,F,τ} con spazio totale B, spazio di base X e proiezione canonica τ:B→X è detto fibrato vettoriale se: (a) la fibra tipica X è uno spazio vettoriale [...] di dimensione finita e la sua topologia relativa (come sottoinsieme di B) coincide con la sua topologia come spazio vettoriale; (b) ogni complesso {B,X,F,τ} su uno spazio compatto di Hausdorff connesso X e fibra tipica ℂ{[, esistono un intero m> ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: CORRISPONDENZA BIUNIVOCA – GEOMETRIA DIFFERENZIALE – APPLICAZIONE LINEARE – PRODOTTO CARTESIANO – SPAZIO VETTORIALE

TOPOLOGIA ASTRATTA

Enciclopedia Italiana - II Appendice (1949)

TOPOLOGIA ASTRATTA S. Fac. . La topologia (meno modernamente chiamata analysis situs; v. III, p. 87) si occupa delle proprietà invarianti degli insiemi di punti nelle trasformazioni bicontinue (omeomorfismi), [...] di chiusura, da quello di intorno; si ottiene così il seguente complesso di assiomi (F. Hausdorff − 1, oppure ∞, che si indica con dimS, mentre dimP S significa la dimensione di S nell'elemento P. Il numero dimS è definito dalle tre proprietà: 1) dimS ... Leggi Tutto

La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi Gabriele Lolli La teoria degli insiemi La teoria degli insiemi è universalmente considerata, nella sua concezione e impostazione [...] lato, una tappa miliare nello sviluppo della teoria della dimensione. Pure di Cantor sono le nozioni topologiche che Borel tratta nella che si trascinava fin dal tempo di Hausdorff, che cioè i modelli della teoria di Zermelo-Fraenkel (ZF) che sono ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La probabilità

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La probabilita Eugenio Regazzini La probabilità Evoluzione della nozione di probabilità La grande difficoltà in cui si dibattevano i cultori [...] problema interessante è dunque quello di caratterizzare le fluttuazioni estreme delle medie Sn/n. Felix Hausdorff (1868-1942) dimostrò, nel va menzionata la possibilità di descrivere le corrisponenti di stribuzioni di dimensione finita a partire da ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] di dimensione infinita. Il significato di convergenza di di topologia forte sia quella di topologia debole in uno spazio di Hilbert astratto. Quest'ultima è basata su un sistema di intorni che definisce una topologia di tipo Hausdorff. Ogni intorno di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

PEANO, Giuseppe

Dizionario Biografico degli Italiani (2015)

PEANO, Giuseppe Clara Silvia Roero PEANO, Giuseppe. – Nacque a Spinetta, nei pressi di Cuneo, il 27 agosto 1858, secondogenito di Bartolomeo e di Rosa Cavallo, proprietari terrieri. Frequentò le scuole [...] degli spazi vettoriali, comprensiva anche degli spazi di dimensione infinita. Applicato alla geometria differenziale e di una curva che passa per tutti i punti di un quadrato e indicò le proprietà di questo tipo di curve. Felix Hausdorff ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: JOHANN PETER GUSTAV LEJEUNE DIRICHLET – CENTRO DI DOCUMENTAZIONE TERRITORIALE – ACCADEMIA DELLE SCIENZE DI TORINO – FUNZIONE DI PIÙ VARIABILI – GEOMETRIA DIFFERENZIALE
Mostra altri risultati Nascondi altri risultati su PEANO, Giuseppe (6)
Mostra Tutti
1 2 3
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali