• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
17 risultati
Tutti i risultati [65]
Matematica [16]
Fisica [27]
Biologia [13]
Fisica matematica [10]
Meccanica dei fluidi [9]
Temi generali [7]
Medicina [8]
Meccanica [7]
Meccanica quantistica [8]
Analisi matematica [6]

laplaciano

Dizionario delle Scienze Fisiche (1996)

laplaciano laplaciano 〈laplasiano, ma pronunciato anche all'it.〉 [s.m. Der. dal cognome di P.-S. de Laplace] [ANM] L. od operatore di Laplace: è detto anche parametro differenziale secondo, o nabla quadrato, di una funzione e ha simb. Δ (il più diffuso nel passato) oppure ∇2 (il più diffuso attualmente nella fisica, intendendosi con il l. il prodotto scalare dell'ope-ratore vettoriale nabla per sé ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su laplaciano (1)
Mostra Tutti

TENSORIALE, ALGEBRA e ANALISI

Enciclopedia Italiana - IV Appendice (1981)

TENSORIALE, ALGEBRA e ANALISI Dionigi Galletto Il calcolo t., sinonimo di calcolo differenziale assoluto (v. differenziale assoluto, calcolo, XII, p. 796; tensore, XXXIII, p. 497), i cui fondamenti [...] Wp sia priva di bordo (∂Wp vuota), ecc., e che include come casi particolari, tra l'altro, i teoremi del rotore, della divergenza, del gradiente, ecc. (v. vettore, XXXV, p. 279, e vettoriale, campo, App. I, p. 1125) dell'ordinario calcolo vettoriale ... Leggi Tutto

campo

Enciclopedia on line

Biologia C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine [...] cioè scrivere: v = grad U, cioè il vettore del c. è il gradiente del potenziale. Spesso, particolarmente nell’elettromagnetismo, si assume invece v C. vettoriale in ogni punto del quale sia nulla la divergenza del vettore del campo: div v = 0. ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – EMBRIOLOGIA – STORIA DELLA BIOLOGIA – ELETTROLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – STORIA DELLA MATEMATICA – PREISTORIA – STORIA CONTEMPORANEA – IMPIANTI E STRUTTURE – SPORT NELLA STORIA
TAGS: TEOREMA FONDAMENTALE DELL’ALGEBRA – REPUBBLICA SOCIALE ITALIANA – ELETTRODINAMICA QUANTISTICA – RADIAZIONE ELETTROMAGNETICA – AMPLIAMENTO TRASCENDENTE
Mostra altri risultati Nascondi altri risultati su campo (3)
Mostra Tutti

EQUAZIONI

Enciclopedia Italiana - VI Appendice (2000)

(XIV, p. 132; App. III, i, p. 564; IV, i, p. 714; v. equazioni differenziali, App. V, ii, p. 131). Il concetto generale di e. in matematica è trattato nella voce equazioni del vol. XIV dell'Enciclopedia [...] in grado di scrivere il teorema generale della divergenza nella forma classica. Questa indagine gli fornì dimensionale delle superfici minime. Miranda, avvalendosi della stima del gradiente delle soluzioni dell'e. delle superfici minime, dimostrata ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE – ACCADEMIA DELLE SCIENZE DI PARIGI – ACCADEMIA DELLE SCIENZE DI TORINO – EQUAZIONI ALLE DERIVATE PARZIALI – DISUGUAGLIANZA ISOPERIMETRICA
Mostra altri risultati Nascondi altri risultati su EQUAZIONI (9)
Mostra Tutti

Computazionali, metodi

Enciclopedia Italiana - VI Appendice (2000)

I m. c. permettono di risolvere con calcolatori elettronici, all'interno delle scienze applicate, i problemi complessi che sono formulabili tramite il linguaggio della matematica. Tali problemi raramente [...] lineare numerica (di Jacobi, di Gauss-Seidel, di Richardson, del gradiente, e così via; v. numerici, calcoli, App. la [1] su ogni sottoregione T di Ω, grazie al teorema della divergenza di Gauss si ottiene: avendo indicato con Γ il bordo di T e, ... Leggi Tutto
TAGS: FORMULA FONDAMENTALE DEL CALCOLO INTEGRALE – TEOREMA FONDAMENTALE DELL'ALGEBRA – EQUAZIONE DIFFERENZIALE ORDINARIA – TOMOGRAFIA ASSIALE COMPUTERIZZATA – EQUAZIONI ALLE DERIVATE PARZIALI

VETTORE

Enciclopedia Italiana (1937)

VETTORE Roberto Marcolongo Matematica. - Le grandezze, che si incontrano in geometria, in meccanica, in fisica, si possono distinguere in due classi. Le une - quali, ad es., le lunghezze, le aree, i [...] di trasformazione d'integrali di volume in integrali di superficie, rispettivanente detti il teorema del gradiente, del rotore e della divergenza (o del flusso): Infine sussiste il teorema della circuitazione (G. Stokes) dove l'integrale (curvilineo ... Leggi Tutto
Mostra altri risultati Nascondi altri risultati su VETTORE (6)
Mostra Tutti

Computazionali, metodi

Enciclopedia della Scienza e della Tecnica (2007)

Computazionali, metodi Alfio Quarteroni I metodi computazionali permettono di risolvere con i computer, nell'ambito delle scienze applicate, problemi complessi formulabili tramite il linguaggio della [...] numerica (di Jacobi, di Gauss-Seidel, di Richardson, del gradiente, e così via). Indicato con ek=x−xk l' la [8] su ogni sottoregione T di Ω, grazie al teorema della divergenza di Gauss si ottiene: [9] formula avendo indicato con Γ il bordo di ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA
TAGS: FORMULA FONDAMENTALE DEL CALCOLO INTEGRALE – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – SISTEMA DI EQUAZIONI, LINEARI – METODO DEGLI ELEMENTI FINITI

potenziale

Dizionario delle Scienze Fisiche (1996)

potenziale potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] a partire dalle sorgenti del campo e il cui rotore dà, a meno del gradiente di una funzione scalare, il vettore del campo (v. oltre: per il gradiente di una funzione scalare, per individuare univocamente tale p. occorre darne la divergenza (come si ... Leggi Tutto
CATEGORIA: TEMI GENERALI – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – RELATIVITA E GRAVITAZIONE – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su potenziale (2)
Mostra Tutti

BURGATTI, Pietro

Dizionario Biografico degli Italiani (1972)

BURGATTI, Pietro Enzo Pozzato Nacque a Cento (Ferrara) il 27 febbr. 1868 da Federico e da Marietta Biegoli. Aveva abbracciato negli anni giovanili la carriera militare, che abbandonò per l'interesse [...] Rend. dell'Acc. naz. dei Lincei, cl.di sc. fis., s. 5, XXV (1916), pp. 311-316, 372-376; I teoremi del gradiente,della divergenza e della rotazione sopra una superficie e loro applic. ai potenziali, in Mem. dell'Accad. delle scienze di Bologna, s. 7 ... Leggi Tutto
CATEGORIA: BIOGRAFIE – FISICA MATEMATICA
Mostra altri risultati Nascondi altri risultati su BURGATTI, Pietro (1)
Mostra Tutti

nabla

Enciclopedia on line

Operatore vettoriale, di simbolo ∇, avente componenti , mediante il quale, nell’analisi vettoriale, si esprimono facilmente il gradiente, la divergenza, il rotore e il laplaciano. Precisamente, il gradiente [...] della funzione scalare f risulta dato dal prodotto, in senso operatorio, del vettore ∇ per la funzione f, e così la divergenza e il rotore della funzione vettoriale v sono espressi rispettivamente dal prodotto scalare e dal prodotto vettoriale di ∇ ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: OPERATORE LAPLACIANO – PRODOTTO VETTORIALE – FUNZIONE VETTORIALE – ANALISI VETTORIALE – PRODOTTO SCALARE
Mostra altri risultati Nascondi altri risultati su nabla (2)
Mostra Tutti
1 2
Vocabolario
nabla
nabla s. m. [dall’ingl. nabla, che è dal gr. νάβλα «sorta di arpa» (v. nablo e nebel), con allusione alla forma del simbolo]. – Nell’analisi vettoriale, operatore, di simbolo ∇, costituito dalle derivate parziali rispetto alle tre coordinate...
operatóre
operatore operatóre s. m. [dal lat. tardo operator -oris]. – 1. (f. -trice) a. Chi opera, chi compie determinate azioni o operazioni, per lo più abitualmente. Raro in usi generici: o. del male; o. di incantesimi; o. d’inganni; e ant. con il...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali