La scienza in Cina: l'epoca Song-Yuan. La matematica
Karine Chemla
Annick Horiuchi
Andrea Eberhard-Bréard
La matematica
La rinascita della matematica e la tarda tradizione settentrionale
di Karine [...] e le relative ricerche: una nuova concezione delle equazioni algebriche
L'insistenza sul ritorno alle fonti della conoscenza matematica e la ricerca di una profonda comprensione degli elementi fondamentali trovano un'eco nel fatto che tutti gli ...
Leggi Tutto
La scienza presso le civilta precolombiane. Pratiche di calcolo nell'antica Mesoamerica
John S. Justeson
Pratiche di calcolo nell'antica Mesoamerica
La matematica mesoamericana si è sviluppata al di [...] da 1 a (b−1).
L'unico elemento del formalismo algebrico che non è presente in alcuna di queste numerali da 6 fino a 9 hanno essenzialmente una struttura 5+n, anche se l'elemento che corrisponde a 5 in queste parole non è una parola per 'cinque'; i ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] il manuale che egli adottava a lezione, il Traité élémentaire du calcul différentiel et du calcul intégral (1802) che in modo da non ricorrere mai ad argomenti tratti dalla generalità dell'algebra" (Cauchy 1821a, p. 2) tanto cara a Lagrange. La ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] del tutto prive di ogni riferimento a una qualunque interpretazione numerica degli elementi usati" (Weber 1893, p. 521). È il punto di vista che diventerà dominante in algebra a partire dagli anni Trenta del XX secolo.
La concezione esistenziale ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Geometria pratica
Hélène Bellosta
Geometria pratica
Nella classificazione delle scienze di al-Fārābī figura la categoria dei 'procedimenti [...] ingegnosi' (῾ilm al-ḥiyal) che comprende tra l'altro l'algebra assieme a un complesso di discipline, nelle quali si mescolano scienze matematiche ed elementi materiali, a dimostrazione che a quel tempo (X sec.) i confini tra sapere e fare tracciati ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Algebra, geometria, indivisibili
Enrico Giusti
Primi progressi nell’algebra
Dopo un periodo di gestazione lungo tre secoli, l’algebra è la prima disciplina in cui nel Cinquecento si registrano sostanziali [...] , e avrà – almeno agli inizi – una scarsa attenzione per quelle di grado superiore.
Con Bombelli l’intersezione tra algebra e geometria acquista un altro elemento. Come nella tradizione abachistica, i problemi geometrici vengono tradotti in termini ...
Leggi Tutto
Scienza greco-romana. La geometria da Apollonio a Eutocio
Reviel Netz
La geometria da Apollonio a Eutocio
Il periodo di formazione del canone geometrico greco si estende dal 200 a.C. al 550 d.C., come [...] ’ e di conseguenza più vicina all’impostazione moderna. Zeuthen aveva ragione nel trovare in Apollonio elementi che vanno nella direzione dell’algebra moderna, ma i suoi critici hanno anch’essi ragione nel sottolineare che Apollonio non andava verso ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali
Haïm Brezis
Felix Browder
Equazioni differenziali alle derivate parziali
Lo studio delle equazioni [...] grado. Il grado, deg(I-C,G,p) si ottiene dal calcolo algebrico del numero di soluzioni dell'equazione:
[6] (I-C)u=p, u di L2 dotato di una norma diversa. Per definizione, per ogni elemento u di H esiste una successione di funzioni lisce (un) tali ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...] (s)+λ∫bαK(s,t)f(t)dt=g(t)
nella quale le funzioni f e g sono elementi di C[a,b], K(s,t) è una funzione continua di s e t, e λ loro applicazioni alla fisica teorica dando inizio alla teoria delle algebre di operatori. Dopo il lavoro di Hilbert e prima ...
Leggi Tutto
La civilta islamica: condizioni materiali e intellettuali. Algebra e linguistica. Gli inizi dell'analisi combinatoria
Roshdi Rashed
Algebra e linguistica. Gli inizi dell'analisi combinatoria
Intorno [...] teorema del binomio e vederli come strumenti matematici necessari per l'algebra dei polinomi, per l'estrazione della radice n-esima di un intero, ecc. e altra cosa è considerarli come elementi di una nuova disciplina che si occupa delle partizioni di ...
Leggi Tutto
elemento
eleménto s. m. [dal lat. elementum (di origine incerta), con cui i Latini rendevano i varî significati del gr. στοιχεῖον «principio, rudimento, lettera dell’alfabeto»]. – 1. Nel sign. più ampio, si dicono elementi le sostanze semplici...
elementare
agg. [dal lat. mediev. elementaris, lat. tardo elementarius]. – 1. a. Che ha natura di elemento o che si riferisce a un elemento: sostanze, corpi e., che non si possono scomporre, semplici; particelle e., quelle, come il neutrino,...