• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
il chiasmo
140 risultati
Tutti i risultati [331]
Matematica [140]
Fisica [84]
Analisi matematica [57]
Fisica matematica [43]
Storia della matematica [37]
Storia della fisica [36]
Biografie [29]
Temi generali [29]
Algebra [23]
Meccanica [23]

NUMERICI CALCOLI

Enciclopedia Italiana - III Appendice (1961)

NUMERICI CALCOLI (XXV, p. 29) Enzo APARO Generalità. - Il concetto di calcolo numerico si può introdurre da un punto di vista generale, come segue. Un insieme finito di oggetti, un insieme finito di [...] reale, definita in A, due volte parzialmente derivabile rispetto alle xi in A con derivate ivi continue. Inoltre il sistema fi m componenti (reali) verificante in I il sistema di m equazioni differenziali ordinarie in m incognite e la condizione y(x0) ... Leggi Tutto

OPERATORI; OPERAZIONALE, CALCOLO

Enciclopedia Italiana - IV Appendice (1979)

OPERATORI; OPERAZIONALE, CALCOLO (od operatorio, calcolo) Tullio Viola Riteniamo opportuno aggiungere alle considerazioni svolte nelle voci: operatori (App. III, 11, p. 317) e simbolico, calcolo (App. [...] numerosi esempi si potrebbero dare in applicazione dei metodi dell'analisi funzionale alle equazioni differenziali, sia ordinarie che a derivate parziali, alle equazioni integro-differenziali, ecc. Ma per essi rinviamo alla bibliografia. Bibl.: A ... Leggi Tutto

MIRANDA, Carlo

Dizionario Biografico degli Italiani (2011)

MIRANDA, Carlo Franco Palladino Nacque a Napoli il 15 ag. 1912 da Giovanni, medico e professore all’Università di Napoli (di cui fu rettore nel 1921-23) e da Elena Nimmo. Compiuti gli studi secondari, [...] movimenti come traslazioni, rotazioni, e così via. Si scopre allora che le soluzioni delle equazioni differenziali alle derivate ordinarie e parziali – che sono tra i principali strumenti predittivi di cui oggi disponga la scienza moderna – possono ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ISTITUTO NAZIONALE PER LE APPLICAZIONI DEL CALCOLO – CONSIGLIO NAZIONALE DELLE RICERCHE – ACCADEMIA DELLE SCIENZE DI TORINO – SCUOLA NORMALE SUPERIORE DI PISA – ACCADEMIA NAZIONALE DEI LINCEI
Mostra altri risultati Nascondi altri risultati su MIRANDA, Carlo (1)
Mostra Tutti

integrale

Enciclopedia on line

In matematica, operazione eseguita su una funzione di variabile reale o complessa per determinare l’area delimitata dalla funzione stessa e dall’intervallo su cui è definita. Il termine s’incontra per [...] concetto di i. definito può essere trasportato alle funzioni di due, tre, quattro ..., n superficie di equazione cartesiana z= in (a, b) una successione di intervalli parziali (I1, I2, I3 in fig. 3) tali Bi che moltiplicano le derivate g′(x) risultino ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONI DI DUE O PIÙ VARIABILI – FUNZIONE DI VARIABILE COMPLESSA – INTEGRAZIONE PER SOSTITUZIONE – FUNZIONE DI VARIABILE REALE – INTERVALLO DI INTEGRAZIONE
Mostra altri risultati Nascondi altri risultati su integrale (3)
Mostra Tutti

SERIE

Enciclopedia Italiana - IV Appendice (1981)

SERIE (XXXI, p. 435; App. III, 11, p. 699) Tullio Viola 1. Serie numeriche. - Sia una serie a termini reali e positivi, le cui successive somme parziali indichiamo con Ai criteri di convergenza e divergenza [...] Carathéodory e E. Landau, 1911). XVI) Se le somme parziali sn(z) (n = 1, 2, ...) sono Serie di Lagrange. Sia assegnata un'equazione del tipo nella quale f (w) alle seguenti condizioni: Grazie alle punto x0 ∈ O, le derivate prima e seconda, e quest ... Leggi Tutto
TAGS: CALCOLO DELLE VARIAZIONI – CALCOLO DIFFERENZIALE – CALCOLO DIFFERENZIALE – ANALISI FUNZIONALE – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su SERIE (6)
Mostra Tutti

OPERATIVA, RICERCA

Enciclopedia Italiana - V Appendice (1993)

OPERATIVA, RICERCA Lucio Bianco-Mario Lucertini (App. III, II, p. 315; IV, II, p. 669) Premessa. − La r.o. è una disciplina che, a partire da radici culturali diversificate, ha acquisito soltanto negli [...] state in genere solo parziali, mentre le difficoltà di strumenti di supporto alle decisioni e alla gestione espressa da un'equazione lineare, vincoli espressi da equazioni e disequazioni comunque l'uso delle derivate nella ricerca dell'ottimo, ... Leggi Tutto
TAGS: RETI DI TELECOMUNICAZIONE – PUBBLICA AMMINISTRAZIONE – SECONDA GUERRA MONDIALE – PROGRAMMAZIONE LINEARE – TEORIA DEL CONTROLLO
Mostra altri risultati Nascondi altri risultati su OPERATIVA, RICERCA (7)
Mostra Tutti

Il Rinascimento. Le arti matematiche

Storia della Scienza (2001)

Il Rinascimento. Le arti matematiche Eberhard Knobloch Ivo Schneider Le arti matematiche Il concetto di scienze matematiche di Eberhard Knobloch Il Rinascimento riprese dal Medioevo il concetto delle [...] per due e si sostituiscano le metà alle radici, dove dovranno restare sinché non sarà parziali nella risoluzione di questo tipo di equazioni in: Kurt, Vogel, Kleinere Schriften zur Geschichte der Mathematik, hrsg. von Menso Folkerts, Stuttgart, Steiner ... Leggi Tutto
CATEGORIA: COMPUTO DEL TEMPO – STORIA DELLA MATEMATICA

Numeri, teoria dei

Enciclopedia del Novecento (1979)

Numeri, teoria dei LLarry Joel Goldstein di Larry Joel Goldstein SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] permessa ogni combinazione di segni. Le equazioni diofantee derivano il loro nome da Diofanto di il problema 1, ma solo parziale con il problema 2, che ;0. Questo risultato ha un'immediata applicazione alle equazioni diofantee. Teorema: sia f(x, y) ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – LEGGE DI RECIPROCITÀ QUADRATICA – DOMINIO A FATTORIZZAZIONE UNICA – COSTRUIBILE CON RIGA E COMPASSO – TEOREMA DI KRONECKER-WEBER

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] Tav. Ia e Ib). Ne deriva che ogni equazione algebrica di grado n ha il lavoro dei pochi che avevano assistito alle sue lezioni o che l'avevano conosciuto stata chiarita intorno al 1880, e solo parzialmente, da alcuni risultati di Poincaré e di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] [0,1] alle matrici 2×2 delle funzioni lisce sulla retta reale le cui derivate sono rapidamente convergenti. La struttura di modulo destro logaritmica delle tracce parziali: (è utile , definisce la metrica mediante l'equazione [68], dall'altro la sua ... Leggi Tutto
CATEGORIA: GEOMETRIA
1 2 3 4 5 6 7 8 ... 14
Vocabolario
ónda
onda ónda s. f. [lat. ŭnda]. – 1. a. Massa d’acqua che si solleva e si abbassa alternativamente sul livello di quiete (del mare, di un lago, ecc.), per effetto del vento o per altra causa (maree, ecc.), così che la sua superficie assume un...
pressióne
pressione pressióne s. f. [dal lat. pressio -onis, der. di pressus, part. pass. di premĕre «premere»]. – 1. a. Genericam., l’atto, l’azione di premere, di esercitare una forza sulla superficie di un corpo materiale, così da determinarne un...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali