• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
254 risultati
Tutti i risultati [806]
Matematica [254]
Fisica [236]
Fisica matematica [108]
Temi generali [103]
Analisi matematica [102]
Algebra [75]
Chimica [71]
Storia della fisica [64]
Ingegneria [58]
Statistica e calcolo delle probabilita [57]

L'Ottocento: matematica. Calcolo geometrico

Storia della Scienza (2003)

L'Ottocento: matematica. Calcolo geometrico Paolo Freguglia Gert Schubring Calcolo geometrico Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] enunciato il seguente teorema: "Tutte le radici di un'equazione di grado qualunque sono reali e possono essere rappresentate con ovvero un vettore, si possa rappresentare come combinazione lineare di m grandezze del primo ordine e questo spiega ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La matematizzazione della biologia e la biomatematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La matematizzazione della biologia e la biomatematica Giorgio Israel La matematizzazione della biologia e la biomatematica Le sorgenti concettuali [...] volta la legge di Malthus in formula matematica ‒ ovvero nell'equazione differenziale dp/dt=mp(t), dove p(t) esprime il numero matematico, in quanto rappresentava il primo caso di oscillatore non lineare, assieme a quello di Volterra-Lotka ‒ fu il ... Leggi Tutto
CATEGORIA: STORIA DELLA BIOLOGIA – STORIA DELLA MATEMATICA

Frattali

Enciclopedia della Scienza e della Tecnica (2007)

Frattali Luciano Pietronero La geometria frattale permette di caratterizzare le strutture che godono della proprietà di invarianza di scala. Il termine frattale (dal latino fractus, rotto o frammentato) [...] strutture sono evidenti e dimostrano come un'iterazione non lineare estremamente semplice possa dar luogo a strutture di grande complessità. Un esempio di equazioni non lineari apparentemente elementari che danno origine a comportamenti complessi ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GRUPPO DI RINORMALIZZAZIONE – EQUAZIONI DI NAVIER-STOKES – EQUILIBRIO TERMODINAMICO – EQUAZIONI DIFFERENZIALI – INSIEME DI MANDELBROT

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti Roger Cooke Brian Griffith La topologia degli insiemi di punti La topologia generale o topologia degli insiemi [...] una costante, entrambi i membri di questa equazione devono essere costanti. La serie a secondo a zero. La funzione F(x) resta continua, e per il risultato di Schwarz deve essere lineare in un intervallo (x0-δ, x0) a sinistra e in uno (x0, x0+δ) a ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

potenziale

Dizionario delle Scienze Fisiche (1996)

potenziale potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] . Nella fisica classica (per es., nel-l'acustica) abbiamo un'equazione di D'Alembert ove al posto della velocità della luce appare la [EMG] Diagramma di p.: per una struttura circuitale lineare (un tratto di circuito, un intero circuito o un ... Leggi Tutto
CATEGORIA: TEMI GENERALI – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – RELATIVITA E GRAVITAZIONE – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su potenziale (2)
Mostra Tutti

campo

Dizionario delle Scienze Fisiche (1996)

campo campo [Der. del lat. campus "estensione di terreno"] [LSF] Termine per indicare, con aderenza al signif. letterale, un'estensione di spazio caratterizzata da ben definite proprietà fisiche, sia [...] , C- è il cosiddetto c. dei numeri algebrici (radici di equazioni a coefficienti razionali) e se C è invece il c. reale, deformato in condizioni elastiche; (b) estensiv., regione lineare della caratteristica sforzo-deformazione del materiale. ◆ [EMG ... Leggi Tutto
CATEGORIA: ACUSTICA – BIOFISICA – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – METROLOGIA – OTTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su campo (2)
Mostra Tutti

BELTRAMI, Eugenio

Dizionario Biografico degli Italiani (1966)

BELTRAMI, Eugenio Nicola Virgopia Nacque a Cremona il 16 nov. 1835. Compiuti gli studi secondari nel ginnasio liceo di Cremona, s'iscrisse nel 1853 alla scuola di matematica dell'università di Pavia, [...] , il B. diede la definizione dell'inestindibilità come variante dell'elemento lineare (e non superficie come considerava Lagrange), stabilendo le equazioni fondamentali e ricavando la teoria delle tensioni superficiali; aggiunse inoltre le formule ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ACCADEMIA DELLE SCIENZE DI TORINO – ACCADEMIA DELLE SCIENZE DI PARIGI – EQUAZIONE DIFFERENZIALE – GEOMETRIA DIFFERENZIALE – GEOMETRIA ANALITICA
Mostra altri risultati Nascondi altri risultati su BELTRAMI, Eugenio (4)
Mostra Tutti

circuito

Dizionario delle Scienze Fisiche (1996)

circuito circùito [Der. del lat. circuitus, da circuire "andare intorno", comp. di circum "intorno" e ire "andare"] [ALG] Qualunque curva i cui punti siano in corrispondenza biunivoca con i punti di [...] c. in serie (la trattazione della rete in parallelo è duale di essa), per esso si ha l'equazione differenziale: f-d(Li)/dt=Ri, essendo i l'intensità della corrente; se il c. è lineare e normale (L e R indipendenti da i e dal tempo t), si ha f-L(di/dt ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – MECCANICA DEI FLUIDI – OTTICA – TEMI GENERALI – ALGEBRA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su circuito (3)
Mostra Tutti

meccanica

Dizionario delle Scienze Fisiche (1996)

meccanica meccànica [Der. del lat. mechanica, dal gr. mechaniké (téchne) "(arte) delle macchine"] [MCC] Nella suddivisione tradizionale della fisica, la scienza che studia le leggi del moto dei corpi, [...] εf(x) della x (e, in qualche caso, anche della ẋ): ẍ+εf(x)ẋ+x=F cos(Ωt+α); è questa l'equazione differenziale di Liénard, non lineare per la presenza del termine f(x)ẋ, con F=0 nel caso delle oscillazioni libere, con F≠0 nel caso delle oscillazioni ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su meccanica (4)
Mostra Tutti

BIANCHI, Luigi

Dizionario Biografico degli Italiani (1968)

BIANCHI, Luigi Enzo Pozzato Figlio del giurista Saverio, nacque a Parma il 18 genn. 1856. Entrato alla Scuola normale superiore di Pisa il 14 nov. 1873, si laureò in matematica il 30 nov. 1877. Fu abilitato [...] di raggi,ibid., III (1887), I, pp. 369-370; Sulla equazione a derivate parziali del Cayley nella teoria delle superfici,ibid., pp. 442- . 137-146; Sopra certe forme particolari dell'elemento lineare sferico,ibid., pp. 303-311; Sulle superfici spirali ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: SCUOLA NORMALE SUPERIORE DI PISA – ACCADEMIA NAZIONALE DEI LINCEI – EQUAZIONE A DERIVATE PARZIALI – GEOMETRIA DIFFERENZIALE – ORDINE CIVILE DI SAVOIA
Mostra altri risultati Nascondi altri risultati su BIANCHI, Luigi (3)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 15 ... 26
Vocabolario
lineare¹
lineare1 lineare1 agg. [dal lat. linearis]. – 1. Inerente a una linea (per lo più retta), che procede secondo una retta, o che si sviluppa prevalentemente nel senso della lunghezza: misure l., le misure di lunghezza (contrapp. alle misure...
equazióne
equazione equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali