Lienard Alfred Marie
Liénard 〈lienàar〉 Alfred Marie [STF] (Amiens 1869 - m. 1959) Prof. di meccanica nella École supérieure des mines a Parigi (1908), di cui fu anche direttore (1929). ◆ [ANM] Equazione [...] di L. generalizzata: v. equazionidifferenzialiordinarie nel campo reale: II 463 d. ◆ [FSD] Formula di L.: v. elettrodinamica classica: II 289 e. ◆ [EMG] Potenziale ritardato di L.-Wiechert: v. irraggiamento di cariche: III 317 a. ...
Leggi Tutto
Milne William Edmund
Milne 〈miln〉 William Edmund [STF] (Pendleton, Oregon, 1890 - Dublino 1950) Prof. di matematica nell'univ. dell'Oregon, a Corwallis (1932). ◆ [ANM] Formula, formula di correzione [...] e formula di predizione-correzione di M.: serve per risolvere approssimativamente alcuni tipi di equazionidifferenzialiordinarie: v. calcolo numerico: I 410 a sgg. ...
Leggi Tutto
Nicoletti Onorato
Nicolétti Onorato [STF] (Rieti 1872 - Pisa 1929) Prof. di matematica nelle univ. di Modena (1898) e poi di Pisa (1899). ◆ [ANM] Problema di N.: v. equazionidifferenzialiordinarie [...] nel campo reale: II 460 e. Nicomède [STF] Geometra greco (2° sec. a.C.). ◆ [ALG] Curva di N.: lo stesso che concoide ...
Leggi Tutto
Picard Charles-Emile
Picard 〈picàr〉 Charles-Émile [STF] (Parigi 1856 - ivi 1941) Prof. di analisi superiore nell'univ. di Parigi; socio straniero dei Lincei (1901). ◆ [ANM] Problema di P.: v. equazioni [...] differenzialiordinarie nel campo reale: II 460 e. ◆ [ANM] Trasformazione di P.: v. trasformazione integrale: VI 297 f. ...
Leggi Tutto
Heun Karl
Heun 〈hòin〉 Karl [ANM] Formula di H.: formula per la risoluzione numerica di equazionidifferenzialiordinarie: v. calcolo numerico: I 409 e. ...
Leggi Tutto
sistema Nell’ambito scientifico, qualsiasi oggetto di studio che, pur essendo costituito da diversi elementi reciprocamente interconnessi e interagenti tra loro e con l’ambiente esterno, reagisce o evolve [...] anche alcune loro derivate in certi punti o lungo certe linee. Lo studio di una generica equazionedifferenziale di ordine n alle derivate ordinarie si può sempre ricondurre a quello di un particolare s. del primo ordine; il contrario non ...
Leggi Tutto
Successione ordinata e continua di elementi, concreti e astratti, dello stesso genere.
Ecologia
Successione delle comunità che si sostituiscono l’una all’altra in una regione. Le comunità di transizione [...] Riemann). Tale metodo si applica anche a equazionidifferenziali nello studio di oscillazioni di corde, membrane o negative. Se ck=0 per i k negativi si rientra nelle s. ordinarie di potenze.
S. di Taylor
Per una funzione di variabile reale o ...
Leggi Tutto
Economia
Attività che provvede alla collocazione sul mercato delle merci e dei servizi, e quindi l’insieme dei punti di vendita che ne assicurano agli acquirenti la disponibilità.
Nell’ingegneria gestionale [...] e trova importanti applicazioni nello studio delle equazionidifferenziali. Limitandoci per semplicità al caso di e una di integrazione in certo senso analoghe a quelle relative alle funzioni ordinarie. Così la derivata n-esima F(n)(ϕ) di una d. F ...
Leggi Tutto
In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali.
Cenni storiciL’antichità
- L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque [...] tale criterio coincide con l’ordinaria nozione di uguaglianza nel caso differenziale stocastica che, sorta inizialmente in tre contesti differenti ma correlati, ha assunto un ruolo autonomo nella matematica e studia equazioni stocastiche (➔ equazione ...
Leggi Tutto
MATEMATICA (XXII, p. 547 e App., II, 11, p. 276)
Francesco G. TRICOMI
Gli sviluppi più recenti della m. saranno qui presi in esame soprattutto nelle loro linee generali e nei loro mutui rapporti; per [...] , sia come studio di spazî a connessione affine, proiettiva, ecc., sia come teoria geometrica delle equazionidifferenziali, vuoi ordinarie vuoi a derivate parziali.
Nel vastissimo campo delle matematiche applicate, il fatto nuovo più importante ...
Leggi Tutto
simbolico
simbòlico agg. [dal lat. tardo symbolĭcus, gr. συμβολικός, der. di σύμβολον «simbolo»] (pl. m. -ci). – 1. Che ha natura e valore di simbolo: numeri, segni s.; il linguaggio s. della matematica; un atto, un gesto s.; in partic., azioni...