Probabilità
Eugenio Regazzini
Apartire dalla fine degli anni Venti del Novecento incominciò a diffondersi l'uso di una definizione generale di probabilità, in sostituzione di precedenti impostazioni [...] considera evento ogni sottoinsieme di Ω, e le ordinarie operazioni su insiemi diventano operazioni sugli eventi. L' possano talvolta facilitare il calcolo esatto di soluzioni di equazionidifferenziali (quando, come nell'esempio del problema di Black ...
Leggi Tutto
differenzialedifferenziale [agg. e s.m. Der. di differenza] [ANM] Nella sua forma più semplice, cioè per funzioni reali di variabile reale, è un funzionale lineare (propr. d. primo) che a ogni f:I⊂R→R [...] termini aleatori: v. equazionidifferenziali stocastiche: II 467 e. ◆ [ANM] Equazione d.: equazione che esprime un legame tra funzioni incognite, le loro derivate successive e le variabili indipendenti; sono equazioni d. ordinarie quelle che esprimo ...
Leggi Tutto
problema di Cauchy
Francesco Calogero
Nel contesto delle equazionidifferenziali di evoluzione, problema di determinare la soluzione corrispondente a un’assegnazione del dato iniziale. In alcuni casi [...] il dato iniziale necessario e sufficiente a individuare la corrispondente soluzione: per es., nel caso della equazione del primo ordine alle derivate ordinarie
con f(x,t) funzione data, il dato iniziale x(0) è chiaramente sufficiente a determinare ...
Leggi Tutto
soluzioni deboli
Luca Tomassini
Consideriamo un operatore differenziale lineare
definito su un aperto connesso A di ℝn, dove le ak(x) sono funzioni su A sufficientemente regolari (per es. differenziabili [...] di derivate parziali (o ordinarie nel caso di operatori su funzioni di una singola variabile). Per es., Di=∂/∂xi con xi componente i-esima del vettore x. Si dice allora soluzione debole dell’equazionedifferenziale Lu=f una funzione (localmente ...
Leggi Tutto
Matematico (Sorau 1810 - Berlino 1893), prof. nelle univ. di Breslavia (1843) e Berlino (1856). Socio straniero dei Lincei (1883). I suoi lavori vertono su equazionidifferenziali (equazione di Riccati), [...] n-me dell'unità e i relativi corpi quozienti che egli chiamò corpi circolari; nei campi suddetti non valgono, in generale, le leggi ordinarie della divisibilità aritmetica, e per ristabilire queste leggi egli introdusse il concetto di numero ideale. ...
Leggi Tutto
TENSORIALE, ALGEBRA e ANALISI
Dionigi Galletto
Il calcolo t., sinonimo di calcolo differenziale assoluto (v. differenziale assoluto, calcolo, XII, p. 796; tensore, XXXIII, p. 497), i cui fondamenti [...] tutto analoghe a quelle ben note che si hanno per gli ordinari vettori riferiti a coordinate cartesiane ortogonali (v. vettore, loc. 1005), risultano le curve integrali del sistema di equazionidifferenziali
dove con
si sono indicati i simboli di ...
Leggi Tutto
OPERATORI; OPERAZIONALE, CALCOLO (od operatorio, calcolo)
Tullio Viola
Riteniamo opportuno aggiungere alle considerazioni svolte nelle voci: operatori (App. III, 11, p. 317) e simbolico, calcolo (App. [...] esempi si potrebbero dare in applicazione dei metodi dell'analisi funzionale alle equazionidifferenziali, sia ordinarie che a derivate parziali, alle equazioni integro-differenziali, ecc. Ma per essi rinviamo alla bibliografia.
Bibl.: A. Cauchy, Sur ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana
Alberto Conte
Ciro Ciliberto
La scuola di geometria algebrica italiana
Gli inizi: Luigi Cremona e [...] differenziali di natura locale. Esse si ricollegano a classici studi sull'analisi geometrica delle equazionidifferenziali oppure la cui 'varietà duale' hanno dimensione minore dell'ordinario. Si deve peraltro a Severi la dimostrazione del bel teorema ...
Leggi Tutto
L'Ottocento: matematica. Immagini della matematica nell'Ottocento
Umberto Bottazzini
Immagini della matematica nell'Ottocento
Il panorama della matematica negli ultimi decenni del XIX sec. è per molti [...] operazioni puramente algebriche che corrispondono alle ordinarie operazioni di derivazione e integrazione. Europa nel campo della meccanica e della teoria delle equazionidifferenziali.
L'incalzare degli avvenimenti politici annulla il previsto ...
Leggi Tutto
MIRANDA, Carlo
Franco Palladino
Nacque a Napoli il 15 ag. 1912 da Giovanni, medico e professore all’Università di Napoli (di cui fu rettore nel 1921-23) e da Elena Nimmo.
Compiuti gli studi secondari, [...] , cioè di movimenti come traslazioni, rotazioni, e così via. Si scopre allora che le soluzioni delle equazionidifferenziali alle derivate ordinarie e parziali – che sono tra i principali strumenti predittivi di cui oggi disponga la scienza moderna ...
Leggi Tutto
simbolico
simbòlico agg. [dal lat. tardo symbolĭcus, gr. συμβολικός, der. di σύμβολον «simbolo»] (pl. m. -ci). – 1. Che ha natura e valore di simbolo: numeri, segni s.; il linguaggio s. della matematica; un atto, un gesto s.; in partic., azioni...