I m. c. permettono di risolvere con calcolatori elettronici, all'interno delle scienze applicate, i problemi complessi che sono formulabili tramite il linguaggio della matematica. Tali problemi raramente [...] algoritmo numerico), e r=b−Ax è il residuo a essa associato, si può facilmente verificare che
,
dove ∥∙∥ indica la norma euclidea, e K(A) è il numero di condizionamento della matrice (se A è una matrice simmetrica con autovalori reali positivi, K(A ...
Leggi Tutto
Algebra
Irving Kaplansky
sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] gruppo di Lie è un gruppo topologico in cui esiste un intorno dell'identità identificabile con un aperto di uno spazio euclideo, in modo tale che le operazioni di gruppo siano funzioni analitiche. Ad un tale gruppo viene associata una algebra di Lie ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
La logica e i fondamenti della matematica tra Ottocento e Novecento
Mario Piazza
I fondamenti della geometria
Nella seconda metà dell’Ottocento, in tutta Europa il baricentro delle ricerche geometriche [...] struttura assiomatica. L’ascesa delle geometrie non euclidee, la diffusione delle idee riemanniane sulle varietà propria proliferazione di ‘geometrie non’, a cominciare da quella non euclidea che ne è il prototipo: non archimedea, non pascaliana, non ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La sintesi newtoniana
Maurizio Mamiani
La sintesi newtoniana
Le opere maggiori di Newton
Isaac Newton rese pubbliche due sole opere, destinate [...] , soprattutto nei primi due libri, in cui Newton usa il linguaggio delle proporzioni geometriche e della geometria euclidea; in parte ricorre anche al proprio metodo delle quantità infinitamente evanescenti. Quanto all'uso del calcolo, leggiamo ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] tali diagrammi sono presenti in aree come le algebre di Lie (le algebre di Lie semplici su ℂ), in geometria euclidea (sistemi di radici), teoria dei gruppi (gruppi di Coxeter), teoria delle rappresentazioni (algebre di tipo a rappresentazione finita ...
Leggi Tutto
Scienza greco-romana. La matematica nel V secolo
Reviel Netz
La matematica nel V secolo
Il titolo di questo capitolo è di per sé problematico. Decidere se al di là di alcuni lavori isolati si possa [...] nel progetto di Euclide; la meraviglia matematica è emigrata altrove. Non è detto quindi che la dimostrazione euclidea dell’esistenza dell’incommensurabilità sia quella originale. Ma qual è allora la dimostrazione originale? E come sono nate ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Aritmetica
Pascal Crozet
Aritmetica
Se ciò che in questa sede intendiamo per aritmetica si ricollega in generale al calcolo con quantità [...] si ha 2⟨√5⟨3), la determinazione di questa radice è possibile soltanto per mezzo di rette e il ricorso a proposizioni euclidee: il suo "valore numerico" (῾adadiyya) resta ignoto agli uomini. Più avanti aggiunge: ciò che non ha un valore numerico è di ...
Leggi Tutto
La grande scienza. Calcolo delle variazioni
Gianni Dal Maso
Calcolo delle variazioni
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] a (y,η), sia convessa rispetto a η, e che valga la [9] con un esponente p>1, dove ∣η∣ è ora la norma euclidea del vettore η=(η1,…,ηn), definita da ∣η∣2=∣η1∣2+…+∣ηn∣2. Il funzionale F è allora semicontinuo inferiormente su W1,p(ω) rispetto alla ...
Leggi Tutto
Scienza greco-romana. Le sfere celesti e le origini della trigonometria
John L. Berggren
Le sfere celesti e le origini della trigonometria
La comparsa della sfera nella geometria è una diretta conseguenza [...] riguardo al progresso che si è avuto nella sferica tra l’epoca di Euclide e quella di Tolomeo confrontare il trattamento euclideo degli angoli tra i cerchi massimi sulla sfera celeste con le tavole tolemaiche di angoli tra l’eclittica e il meridiano ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'analisi numerica
Paolo Zellini
L'analisi numerica
L'analisi numerica moderna comincia a delinearsi verso la metà del XX sec., con le prime [...] di Turing, Rounding-off errors in matrix processes (1948), poco dopo il contributo di von Neumann e Goldstine. In norma euclidea lo stesso prodotto è uguale, per matrici definite positive, precisamente al rapporto λ/μ, per cui si può affermare che ...
Leggi Tutto
euclideo
euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...