• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
lingua italiana
36 risultati
Tutti i risultati [455]
Geometria [36]
Matematica [185]
Fisica [85]
Algebra [63]
Fisica matematica [61]
Analisi matematica [41]
Temi generali [36]
Storia della matematica [39]
Biografie [36]
Storia della fisica [28]

L'Ottocento: matematica. La geometria non euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. La geometria non euclidea Rossana Tazzioli La geometria non euclidea Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] sex, dove a e b sono due oricicli, x la loro distanza e s, s′ le lunghezze di due diversi archi. Nella geometria euclidea e=1, e dunque s=s′ (due rette parallele sono equidistanti). Nella geometria immaginaria si ha invece e>1. Prendendo e uguale ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] corrispondenza tra punti e rette, che può essere estesa al caso generale senza dover operare le distinzioni necessarie nel contesto euclideo, è appunto la dualità, e il punto e la retta che si corrispondono sono detti 'polo' e 'polare'. Una proprietà ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

iperspazio

Enciclopedia on line

In matematica, spazio a più dimensioni; il numero di queste si indica generalmente con n, nel qual caso si parla anche di spazio di dimensione n; poiché lo spazio ordinario è a tre dimensioni, in senso [...] angoli, il parallelismo, la perpendicolarità e generalizzare le altre nozioni valide nella geometria ordinaria, in modo da sviluppare una ‘geometria euclidea’ in un i. di dimensione n. I. proiettivo, di dimensione n I suoi punti sono le (n+1)-ple (x0 ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA PROIETTIVA – GEOMETRIA EUCLIDEA – EQUAZIONE LINEARE – PERPENDICOLARITÀ – SPAZIO EUCLIDEO
Mostra altri risultati Nascondi altri risultati su iperspazio (3)
Mostra Tutti

geometria

Enciclopedia on line

In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali. Cenni storiciL’antichità - L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque [...] ); s’intende che non sono però in contraddizione, dal punto di vista logico, con i postulati. Esistono due tipi di g. non euclidea, la g. iperbolica o di Lobačevskij, nella quale si postula che da ogni punto escono due parallele a una retta data, e ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: OPERAZIONI DI PROIEZIONE E SEZIONE – TEORIA QUANTISTICA DEI CAMPI – TEORIA DELLE SUPERSTRINGHE – POSTULATO DELLE PARALLELE – METODO DELL’ASSONOMETRIA
Mostra altri risultati Nascondi altri risultati su geometria (13)
Mostra Tutti

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] in seguito. L'usuale geometria è solo un caso particolare di questa nuova teoria, così come le geometrie euclidea e non euclidea sono casi particolari della geometria riemanniana. Molti dei concetti più familiari continuano a sussistere, ma con un ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria Umberto Bottazzini I fondamenti della geometria Verso la metà del XIX sec. Georg Friedrich Bernhard Riemann (1826-1866) [...] fondamenti che cambia i temi all'ordine del giorno nell'agenda dei geometri: è la questione dei fondamenti della geometria euclidea a essere posta con forza in primo piano, come aveva intravisto Pieri per primo. Viene meno l'interesse a minimizzare ... Leggi Tutto
CATEGORIA: GEOMETRIA

esotico

Enciclopedia on line

Fisica Per il nucleo esotico ➔ esòtico, nùcleo. Geologia In geotettonica, si dice esotico un blocco o lembo arealmente molto limitato di rocce alloctone, inglobato entro terreni litologicamente diversi [...] diffeomorfa a essa. Il termine esotico passò poi a denominare varietà omeomorfe a una data varietà modello, ma non diffeomorfe a essa. In particolare è stata dimostrata l’esistenza di infinite varietà esotico dello spazio euclideo quadridimensionale. ... Leggi Tutto
CATEGORIA: FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – GEOMORFOLOGIA – GEOMETRIA
TAGS: SPAZIO EUCLIDEO – DIFFEOMORFA – MATEMATICA

L'Età dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele Peter Schreiber Geometria analitica, delle curve e delle superfici. Il problema delle parallele A [...] (fig. 8). Anche qui si dimostra che l'ipotesi che l'angolo α sia ottuso è incompatibile con gli altri assiomi euclidei, mentre è soddisfatta sulla sfera, e che l'ipotesi che α sia retto è equivalente al postulato delle parallele. Anche Lambert ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

tensore di Ricci

Enciclopedia della Scienza e della Tecnica (2008)

tensore di Ricci Gilberto Bini Sia M una varietà dotata di una metrica riemanniana. Indichiamo rispettivamente con gij e con Rijkl le espressioni locali della metrica riemanniana e delle componenti [...] esistono delle coordinate locali rispetto alle quali i coefficienti gij della metrica possono essere approssimati da quelli della metrica euclidea a meno di termini quadratici. Rispetto a tali coordinate la forma di volume di M si esprime in termini ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: GEOMETRIA DIFFERENZIALE – VARIETÀ RIEMANNIANA – METRICA EUCLIDEA – SPAZIO EUCLIDEO – MATRICE INVERSA
Mostra altri risultati Nascondi altri risultati su tensore di Ricci (1)
Mostra Tutti

L'Ottocento: matematica. Geometria superiore

Storia della Scienza (2003)

L'Ottocento: matematica. Geometria superiore David E. Rowe Geometria superiore Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] spazio fisico. Verso la fine degli anni Sessanta, dopo le scoperte di Eugenio Beltrami (1835-1900) sulle geometrie non euclidee, gli spazi a curvatura costante avrebbero attirato maggiore interesse. In seguito agli studi di Sophus Lie (1842-1899) e ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – GEOMETRIA – STORIA DELLA MATEMATICA
1 2 3 4
Vocabolario
euclidèo
euclideo euclidèo (ant. euclìdico) agg. – Relativo al matematico greco Euclide, vissuto intorno al 300 a. C.; in partic., di ente geometrico, o meglio di un sistema ipotetico-deduttivo, soddisfacente i postulati di Euclide: geometria e., v....
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali