nodo
nòdo [Der. del lat. nodus "intreccio di fili"] [MTR] Unità di misura della velocità tuttora usata nella navigazione marittima e aerea, pari a un miglio nautico internazionale (1852 m) all'ora ed [...] , anche a superfici nello spazio. Per una curva piana si distinguono: (a) n. ordinario: nessuno dei due rami della curva ha nel n. un flesso (fig. 1.1), cioè le due tangenti t' e t'' hanno ordine d'intersezione I=3; (b) flecnodo: uno dei rami ha un ...
Leggi Tutto
cubica
cùbica [s.f. dall'agg. cubico] [ALG] Curva algebrica del 3° ordine. Si distinguono in c. piane e c. gobbe (o spaziali). (a) Le c. piane sono rappresentate in coodinate cartesiane da un'equazione [...] 6 rette, non tutte reali, tangenti alla curva), e sono dotate di 9 flessi, che formano una configurazione interessante: su ogni retta che contenga due flessi si trova un terzo flesso; la parabola puntata (fig. 4) ha l'origine come punto isolato; le ...
Leggi Tutto
molteplicita
molteplicità [Der. del lat. multiplicitas -atis, da multiplex (→ molteplice)] [ALG] M. d'intersezione: date due curve, definite una parametricamente, x₁=x₁(t), x₂=x₂(t), e l'altra dalla [...] dell'intersezione tra una curva e la sua tangente, la cui m. è 2 in un punto ordinario e 3 in un punto di flesso. ◆ [MCQ] M. di stati: la condizione di un sistema quantistico quando più livelli consentiti vengono a coincidere in uno solo, come si ha ...
Leggi Tutto
Curva algebrica di ordine 3°. Le c. si distinguono in piane e gobbe. C. piana Ogni curva piana rappresentata in coordinate cartesiane da un’equazione c. in due variabili: f (x, y)=0, dove f (x, y) è un [...] 6 rette, non tutte reali, tangenti alla curva), ed è dotata di 9 flessi, che formano una configurazione interessante: su ogni retta che contenga due flessi si trova un terzo flesso. Da un punto di una c. priva di punto doppio escono quattro rette ...
Leggi Tutto
Matematica
Generalità
Nel linguaggio matematico, sinonimo di linea, intendendosi quindi anche la retta come una particolare curva. Una definizione di c. valida in ogni caso non è possibile per il fatto [...] n è la c. rappresentata dai primi n+1 termini dello sviluppo di Taylor della y=y (x); essa ha contatto (n+1)-punto con la curva. Flesso è un punto O in cui la tangente ha contatto tripunto: si ha qui y″, (x0)=0, ma in tal caso si può avere anche un ...
Leggi Tutto
molteplicità In matematica, m. d’intersezione di più varietà algebriche in un punto comune è il numero intero positivo che si associa a ogni punto comune a due o più varietà algebriche e che denota (in [...] P. Per es., la m. d’intersezione tra una curva C (fig. A) e la sua tangente D, in un punto ordinario P è 2; in un flesso ordinario Q è 3 (fig. B); in un punto doppio R di una curva, la m. d’intersezione tra la curva e una retta generica per il punto ...
Leggi Tutto
ordine
órdine [Der. del lat. ordo -inis] [LSF] (a) Disposizione regolare di più cose secondo una regola prefissata; (b) il grado più o meno grande di organizzazione interna di un sistema complesso, relativ. [...] finito: → corpo. ◆ [ANM] O. di un'equazione differenziale: l'o. maggiore tra quelli delle derivate che vi figurano. ◆ [ALG] O. di un flesso: v. curve e superfici: II 75 e. ◆ [ALG] O. di un ramo di curva: v. curve e superfici: II 76 b. ◆ [FAF ...
Leggi Tutto
L'Ottocento: matematica. Teoria degli invarianti
Leo Corry
Teoria degli invarianti
L'algebra del XIX sec. ebbe uno sviluppo intenso che coprì numerosi domini. Nuove entità matematiche come gruppi, anelli [...] ordine. Egli utilizzò per tale studio quello che oggi è noto come determinante hessiano:
Da considerazioni puramente geometriche sui punti di flesso della curva di equazione f=0 (f è in questo caso un polinomio omogeneo), Hesse, che non conosceva i ...
Leggi Tutto
flesso1
flèsso1 agg. [dal lat. flexus, part. pass. di flectĕre «piegare»], letter. – Piegato: braccio f., ginocchia flesse. Con valore di vero e proprio participio: surgendo ebbe i ginocchi Per riverenzia, e così il capo f. (Ariosto); e nell’accezione...
flesso2
flèsso2 s. m. [dal lat. flexus -us, der. di flectĕre «piegare»]. – Punto di flessione, piegatura. In partic.: 1. In matematica, punto di f. (o d’inflessione), il punto P di una curva piana nel quale la curva attraversa la propria tangente...