• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
il chiasmo
lingua italiana
235 risultati
Tutti i risultati [517]
Matematica [235]
Fisica [108]
Algebra [95]
Fisica matematica [78]
Analisi matematica [73]
Temi generali [61]
Storia della matematica [55]
Biografie [41]
Ingegneria [33]
Filosofia [34]

algebra

Enciclopedia on line

Uno dei rami fondamentali delle scienze matematiche: in senso lato l’a. studia le operazioni, definite in un insieme, che godono di proprietà analoghe a quelle delle ordinarie operazioni dell’aritmetica. [...] la creazione e la soluzione di nuovi problemi geometrici (geometria analitica). A I. Newton (1642-1727) si deve il concetto di funzione algebrica; all’opera di altri grandi matematici, tra i quali L. Euler, J. d’Alembert, G.L. Lagrange, P.-S. Laplace ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – PROPRIETÀ COMMUTATIVA – GEOMETRIA ALGEBRICA – LEONARDO FIBONACCI – SPAZIO VETTORIALE
Mostra altri risultati Nascondi altri risultati su algebra (9)
Mostra Tutti

equazione

Enciclopedia on line

Matematica Definizioni Si chiama e. un’uguaglianza tra due espressioni contenenti una o più variabili ovvero una o più funzioni o anche enti di natura più generale ( incognite dell’e.); se essa è soddisfatta, [...] radici distinte è n. Per le e. algebriche valgono numerosissime proprietà quali: le radici sono funzioni (algebriche) continue dei coefficienti; le funzioni simmetriche delle radici sono funzioni razionali dei coefficienti ecc. Ricordiamo inoltre il ... Leggi Tutto
CATEGORIA: COMPUTO DEL TEMPO – TEMI GENERALI – ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL’ALGEBRA – PRINCIPIO DI ELETTRONEUTRALITÀ – TEORIA DELLE BIFORCAZIONI – POLINOMIO CARATTERISTICO – FUNZIONI TRIGONOMETRICHE
Mostra altri risultati Nascondi altri risultati su equazione (9)
Mostra Tutti

ENRIQUES, Federigo

Dizionario Biografico degli Italiani (1993)

ENRIQUES, Federigo Giorgio Israel Nacque a Livorno il 5 genn. 1871 da Giacomo e da Matilde Coriat. La famiglia si trasferi a Pisa, dove egli frequentò le scuole secondarie. Già qui manifestò la sua [...] ricordato il monumentale manuale redatto in collaborazione con O. Chisini (Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche, 4 voll., Bologna 1915-34), che si caratterizza non soltanto per l'ampiezza dei temi ma anche per ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: SCUOLA NORMALE SUPERIORE DI PISA – TEORIA GENERALE DEI SISTEMI – FILOSOFIA DELLA SCIENZA – ACADÉMIE DES SCIENCES – ACCADEMIA DEI LINCEI
Mostra altri risultati Nascondi altri risultati su ENRIQUES, Federigo (7)
Mostra Tutti

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] o più volte, e ha singolarità solo di ordine finito e solo in un numero finito di punti, allora è una funzione algebrica. Nell'articolo del 1857, pubblicato nel "Journal" di Crelle, Riemann prendeva in esame un problema centrale della matematica di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] . Hensel introdusse in teoria dei numeri l'equivalente delle serie di Puiseux dell'analisi (che descrivono il comportamento di una funzione algebrica nell'intorno di un punto), considerando in particolare serie del tipo ∑n>kanpn, con 0≤an⟨p e k ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

BETTI, Enrico

Dizionario Biografico degli Italiani (1967)

BETTI, Enrico Nicola Virgopia Nacque a Pistoia il 21 ott. 1823; compiuti qui gli studi classici, si laureò in matematica nel 1846 presso l'università di Pisa, dove ebbe come maestro O. F. Mossotti. [...] . stesso diede le formule per quelle equazioni il cui grado è la potenza di un numero primo (Sopra la più generale funzione algebrica che puó sodisfare una equazione il grado della quale è potenza di un numero primo,in Annali di scienze matematiche e ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: SCUOLA NORMALE SUPERIORE DI PISA – SCIENZA DELLE COSTRUZIONI – PROBLEMA DEI TRE CORPI – ACCADEMIA DEI LINCEI – FUNZIONI ELLITTICHE
Mostra altri risultati Nascondi altri risultati su BETTI, Enrico (6)
Mostra Tutti

WEIERSTRASS, Carl

Enciclopedia Italiana (1937)

WEIERSTRASS, Carl Salvatore Pincherle Matematico, fra i più eminenti della seconda metà del sec. XIX. Nato a Osterfeld, presso Münster in Vestfalia, il 31 ottobre 1815, si iscrisse nel 1834 nella facoltà [...] implicite nel campo analitico, una dimostrazione della trascendenza di π e di ogni arco di cerchio la cui corda è funzione algebrica del raggio, ecc. Più che per la stampa, verso la quale il W. manifestò sempre una speciale ritrosia, fu per mezzo ... Leggi Tutto

La seconda rivoluzione scientifica: matematica e logica. L'analisi numerica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. L'analisi numerica Paolo Zellini L'analisi numerica L'analisi numerica moderna comincia a delinearsi verso la metà del XX sec., con le prime [...] iniziale, per esempio un sistema di equazioni lineari al posto di un'equazione alle derivate parziali, oppure una funzione algebrica che approssima una funzione trascendente; (c) la scelta di un modello di calcolo e di un algoritmo in base a speciali ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

bilineare

Dizionario delle Scienze Fisiche (1996)

bilineare bilineare [agg. Comp. di bi- e lineare "doppiamente lineare"] [ALG] Applicazione b.: se A, B, C sono spazi vettoriali sullo stesso campo K, è un'applicazione f di A╳B in C tale che, per ogni [...] A in C e, inoltre, per ogni x∈A, l'applicazione f(x,y) risulta lineare di B in C. ◆ [ALG] Equazione, funzione e polinomio b.: equazione algebrica, funzione o polinomio in due gruppi di una o più variabili, tale che, fissato il valore di un gruppo di ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su bilineare (1)
Mostra Tutti

trascendente

Enciclopedia on line

trascendente In matematica, funzione t., ogni funzione non algebrica, nella quale cioè il legame tra la variabile dipendente y e la variabile indipendente x non può essere espresso da una relazione del [...] . Con il nome di funzioni t. intere si denotano le funzioni di variabile complessa rappresentate da serie di potenze convergenti per ogni valore della variabile. Per numero t. s’intende ogni numero reale che non sia algebrico e quindi che non ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: FUNZIONE ESPONENZIALE – FUNZIONE LOGARITMICA – NUMERI ALGEBRICI – NUMERI REALI – NUMERABILE
1 2 3 4 5 6 7 8 ... 24
Vocabolario
funzióne
funzione funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali