• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
145 risultati
Tutti i risultati [991]
Matematica [145]
Fisica [137]
Medicina [116]
Biologia [106]
Temi generali [110]
Diritto [87]
Economia [74]
Analisi matematica [65]
Fisica matematica [67]
Archeologia [65]

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] generalizzazione della teoria riemanniana delle funzioni alle funzioni di variabili complesse su una superficie algebrica. I su una superficie si può sempre introdurre un sistema di coordinate (u,v) per il quale una funzione F(u,v)=(g(u,v); h(u,v)) a ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] Connes 1983c) che per ogni foliazione F di codimensione uno su una varietà compatta V con classe di Godbillon-Vey non nulla si ha su di essa con una qualunque funzione misurabile. In generale si può agire su una variabile complessa solo con funzioni ... Leggi Tutto
CATEGORIA: GEOMETRIA

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] 'elettricità in conduttori estesi, Riemann, nella sua discussione sugli anelli di Nobili del 1855 e nella sua teoria delle funzioni di variabili complesse, dove le funzioni di Green sono uno strumento fondamentale e Clausius, in numerosi articoli sui ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Solitoni

Enciclopedia del Novecento (1989)

Solitoni Francesco Calogero SOMMARIO: 1. Introduzione: cenno storico.  2. Soluzione di equazioni lineari di evoluzione mediante la trasformata di Fourier.  3. L'equazione di Korteweg-de Vries.  4. La [...] di Fourier (nella variabile x) della u(x, t) mediante le formule: che instaurano una corrispondenza biunivoca fra le funzioni 0 le formule In queste equazioni f e g sono ancora due arbitrari di equazioni non lineari di struttura più complessa ... Leggi Tutto
TAGS: INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS – EQUAZIONE ALLE DERIVATE PARZIALI – TEORIA QUANTISTICA DEI CAMPI – SPAZIO DELLE CONFIGURAZIONI – EQUAZIONE DI SCHRÒDINGER
Mostra altri risultati Nascondi altri risultati su Solitoni (4)
Mostra Tutti

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] +iy e w=u+iv variabili complesse. Sia P(z,w) un polinomio, che si può scrivere nella forma P(z,w)=F(x,y,u,v)+iG le fI sono funzioni C∞ a valori complessi. L'operatore di differenziazione d è definito localmente da dω=∑I dfI ∧dxI, dove df=∑(∂f/∂xi)dxi. ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] 'incognita f [5]  f(s)+λ∫bαK(s,t)f(t)dt=g(t) nella quale le funzioni f e g sono elementi di C[a,b], K(s,t) è una funzione continua di s delle funzioni pseudoanalitiche di una variabile complessa, alle funzioni analitiche di due variabili complesse, al ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] la funzione zeta come funzione della variabile complessa s. Sulla base del lavoro di Riemann, 'altra. Ai numeri primi di ℤ corrispondono polinomi irriducibili f in K[t]. La funzione zeta associata a K(t) si definisce come: [4] ∏f(1-(qdegf)-s)-1 dove ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] è invertibile e d'altra parte, per λ∈S, la restrizione di U−λI alla somma diretta F(λ,U) di tutti i sottospazi N(μ,U) per μ≠λ è invertibile, di Lebesgue alla classica teoria delle funzioni analitiche di una variabile complessa forniva teoremi di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

Computazionali, metodi

Enciclopedia della Scienza e della Tecnica (2007)

Computazionali, metodi Alfio Quarteroni I metodi computazionali permettono di risolvere con i computer, nell'ambito delle scienze applicate, problemi complessi formulabili tramite il linguaggio della [...] di nodi), indipendentemente dalla dimensione n. Approssimazione delle derivate di una funzione Per approssimare in opportuni nodi i valori della derivata di una funzione f alla variabile t (con x fissato), mentre per ogni funzione vettoriale ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA
TAGS: FORMULA FONDAMENTALE DEL CALCOLO INTEGRALE – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – SISTEMA DI EQUAZIONI, LINEARI – METODO DEGLI ELEMENTI FINITI

DE GIORGI, Ennio

Dizionario Biografico degli Italiani (2014)

DE GIORGI, Ennio Enrico Moriconi Nacque l’8 febbraio del 1928 a Lecce figlio di Nicola e di Stefania Scopinich. La madre proveniva da una famiglia di navigatori di Lussino, mentre il padre era insegnante [...] che di ogni realtà, per quanto complessa, si di variabile (1994). La caratterizzazione che viene data delle variabili richiede che per la loro introduzione sia necessario predisporre un dispositivo che comprende, da una parte, una funzione di ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ISTITUTO NAZIONALE PER LE APPLICAZIONI DEL CALCOLO – ACCADEMIA NAZIONALE DELLE SCIENZE, DETTA DEI XL – PONTIFICIA ACCADEMIA DELLE SCIENZE – ACCADEMIA DELLE SCIENZE DI TORINO – EQUAZIONE ALLE DERIVATE PARZIALI
Mostra altri risultati Nascondi altri risultati su DE GIORGI, Ennio (4)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 15
Vocabolario
funzióne
funzione funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
variàbile
variabile variàbile agg. e s. f. [dal lat. tardo variabĭlis, der. di variare «variare»]. – 1. agg. Che varia, che può variare, che è soggetto a variare: grandezza, valore, norma v.; il prezzo è v. secondo le stagioni e la richiesta; quindi...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali